
NASA Technical Memorandum Ioos74

THE ENVIRONMENT FOR APPLICATION SOFTWARE

INTEGRATION AND EXECUTION (EASIE) VERSION 1.0

VOLUME It

PROGRAM INTEGRATION GUIDE

KENNIE H. JONES

DONALD P. RANDALL

SCOTT S. STALLCUP

LAWRENCE F. ROWELL

_IECL_ICb (EA_I_), %_51C_ 1.C. _CIU_E 2"

[_OG/_/M Ih_I_G_AII(N GtILE (_IeJ) 1_1 F
CSCL 09B G3/6|

N89-13SS5

DECEMBER 1988

NASA
Nahonal AeronautLcs and
Space Adm_n_str_tt_on

Langley Research Center
Hampton, Virginia 23665-5225

PREFACE

The Environment for Application Software Integration and

Execution (EASIE) provides both a methodology and a set of

software utility programs to ease the task of coordinating

engineering design and analysis codes. The need for such

techniques and tools has stemned from the computer-aided design

and engineering activities within Langley Research Center's Space

Systems Division (SSD). In SSD, the Vehicle Analysis Branch

(VAB), with emphasis on advanced transportation systems, and the

Spacecraft Analysis Branch (SAB), with emphasis on advanced

spacecraft, share a common need to integrate many stand-alone

engineering analysis programs into coordinated, quick-turnaround,

user-friendly design systems. In particular, the most needed

capabilities include easy selection of application programs,

quick review and modification of program input/output data, and

logging of the actual steps that were executed during the

study. Although the application programs used hy VAB and SAB

differ, the design methods used by their engineers are quite

similar, and great efficiency can be gained by providing a

computer environment that provides the capabilities mentioned

above.

EASIE is a user interface and set of utility programs which

supports rapid integration and execution of programs about a

central relational database. In general, the EASIE system

addresses the needs of four different classes of people who will

be involved in the development of an engineering design system.

Certain individuals may serve in more than one of these roles,

but the following terms will help to clarify several distinct

activities associated with the EASIE system.

The first classification represents the engineer/designer/

analyst. This group conducts the design study by executing

modeling and analysis programs and generating data required to

evaluate the design against its objectives. EASIE documentation

will refer to this group as EASIE system users or, more often, as

users. In general, these users are only interested in executing

programs already installed into an EASlE design system.

A second group aided by EASIE is identified as application

programmers. These programmers are responsible for the

development and improvement of modeling and analysis progralns

used in the engineering design process. They are the experts

with respect to particular application programs and can define

its input and output variables. This must be done before

incl_ision of that program with others into the integrated

system.

The third group is identified as program implementers since

their function is to provide an environment where all the

software tools work together with a minimum of effort. These

people will use information provided by the application

programmers and will install or modify the programs in an EASlE

system by creating appropriate data constructs in the database

and locating files where needed by the EASIE executive.

ii

The fourth classification is design team leader or design

manager. This is the individual or group responsible for

identifying parameters important to the design study and for

configuration management of the data as it is produced by the

design team. This design manager must have an overview of the

total data requirements for the analysis process and must be

concerned foremost with the integrity of the data.

With these terms defined, the four volumes of EASIE

documentation can be associated with the groups most likely to

use them. Each of the volumes addresses different aspects of the

support tools, and each is intended to be independent of the

others.

Volume I, EXECUTIVE OVERVIEW, provides information about the

functions, concepts, and historical development of EASIE and

should be read by anyone trying to determine if EASIE would be

beneficial to their work.

Volume II, PROGRAM INTEGRATION GUIDE, describes the portion

of the EASIE tools supporting both the integration of application

programs into a central database and the definition of the data

dictionary used during data review and modification. This volume

will be used primarily by the program implementer and the design

manager in their responsibilities for the actual installation of

appropriate programs into a fully-integrated design system.

However, the application programmer may also use tools described

in this volume to assist in the documentation of input/output

variables for the application program.

iii

Volume llI, PROGRAM EXECUTION GUIDE, describes the portion

of the EASIE tools supporting the selection and execution of

application programs, building of menus, and editing of program

data. This volume will be of foremost importance to the users

who will perform design studies. In addition, the program

implementers will find the sections concerning the construction

of application-dependent procedures helpful. Finally this

document will also be used by the design manager for reviewing

data and design activities.

Volume IV, SYSTEM INSTALLATION AND MAINTENANCE GUIDE,

describes the procedure of loading the EASIE system onto a

computer. It also gives some insight into the hardware and

software dependencies of the EASIE code. This, most likely, will

be needed by the program implementer to familiarize himself with

the directory structure and location of the various EASIE

components. Although the design of EASIE is intended to reduce

the system dependencies, this version nevertheless reflects in

several ways the current implementation using the Relational

Information Management (RIM*) database management system and the

VAX/VMS + operating system.

Trademark of Boeing Computer Services

Trademark of the Digital Equipment Corporation

iv

TABLE OF CONTENTS

Section

PREFACE .. i

LIST OF FIGURES vii

1.0 INTRODUCTION ... 1

2.0 BACKGROUND ... 4

3.0 THE EASIE TOOLS FOR DATABASE MANAGEMENT AND
PROGRAM INTEGRATION 9

3.1 Parameter Versus Attribute 10
3.2 Integration Using The Conventional Approach 11
3.3 Integration Using EASIE 12

4.0
4.1
4.2
4.3
4.4
4.5

4.6
4.7
4.8
4.9

A SIMPLE INTEGRATION EXAMPLE 14
Constructing The SYSTEM LIBRARY 14
Defining The Data Dictionary 15
Defining The Template Library 17
Constructing The Database Schema 20
Producing FORTRAN Routines For Input And Output
To/From The Database 21
Linking The Example Program 27
Creating REVIEWER Input Files 28
Executing The Example Program 30
Concluding The Simple Example 31

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

A MORE COMPLEX EXAMPLE 37

A Description Of The Programs 37
Defining The Relations 38
Defining The Templates 39
Building The Database Schema 40
Buildtng The FORTRAN [/0 Subroutines 41
Building The REVIEWER Input Files 41
Preparing The Programs 42
Execution Of The Complex Example 45

6.0 SYSTEM

6.1 BR - To

6.2 AR - To

6.3 BT - To

6.4 BF - To

6.5 BS - To
6.6 BRV - To
6.7 BP - To
6.8 PT - To
6.9 LR - To
6.10 PR - To

LIBRARY PROCESSOR REFERENCE GUIDE 47

Build Relations 48

Add To An Existing Relation 50

Build A Template 51
Build FORMATTER Routines 55

Build A Schema Dump For Database 58

Build A REVIEWER Input File 59

Build Program Description 61

Print A Template 64
List Relations 64

Print A Relation 64

TABLE OF CONTENTS

Section

7.0
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14

REVIEWER REFERENCE GUIDE 65
MODIFY Command, N 66
CHA.GECATE6ORY 6 68
NEXT PAGE Command, N68
REPRINT PAGE Command, R 69
LINES PER PAGE Command, L 69
eXPAND- DISPLAY LENGTH Command, X 69

SET COLUHNS Command, S 71
END Command, E 72
QUIT Command, Q 72
HELP Command, H 72
LIST CATEGORIES Command, CAT 72
DEFINE REVIEW SUBSET Command, SUB 73
TOGGLE Command, T 73
Error Nessages 73

APPENDIX A USE OF THE SYSTEH LIBRARY PROCESSOR
FOR THE COHPLEX EXAMPLE A-1

APPENDIX B SOURCE CODE FILES B-1

APPENDIX C TEHPLATE HAKGEO[N C-1

APPENDIX D TEMPLATE DRAWIN D-1

APPENDIX E

APPENDIX F

BUILD EASIE E-I

INSTRUCTIONS - EASIE CODING FORM F-1

APPENDIX G VAX SYHBOL DEFINITIONS G-1

REFERENCES

ABSTRACT

vi

FiDure

1

2

3A

3B

4

S

6

7

8

9

LIST OF FIGURES

Subroutine GETDATA 24

Subroutine PUTDATA 26

Original Program Box 27

Modified Program Box 27

REVIEWER Display of Length, Width, and Height 35

REVIEWER Display of Volume 36

Format of Input File For the Program Draw 38

Display From Program DRAM 46

REVIEWER Display of Parameter Data 75

REVIEWER Display of Attribute Data 75

vii

].O INTRODUCTION

The purpose of this document is to present a set of software

tools designed to aid in the complex task of integrating a

collection of application programs into a single system. The

Environment for Application Software Integration and Execution

(EASIE) tools offer a program integration approach critical in

defining and forming the data paths for inter-program

communication.

This document is intended for programmers faced with the

problems of program integration or program interfacing. For

readers unfamiliar with the rigors of program integration, the

following BACKGROUND section provides the necessary motivation.

Although the acronym EASIE implies simplicity, the problems

encountered when integrating two or more programs are often

formidable. Consequently, the potential EASIE user should

anticipate a relatively high learning curve upon initial exposure

to the database management system (DBMS) terminology and software

tools. One of the principal advantages of using the EASIE tools

is that once the initial learning hurdle is conquered, the

learned program integration techniques are applicable to other

programs or sets of programs.

In addition to a knowledge of the program integration

problem, the reader should have some experience with DBMS

terminology and techniques. In particular, the EASIE tools rely

heavily on the techniques of the relational approach to DBMS such

as those described by C. J. DATE [i]: More specifically, the

EASlE tools are built upon the Relational Information Management

(RIM) DBMS [2]. However, as explained later in this document,

the EASIE tools are DBMS independent.

The computing environment in which the EASIE tools were

developed is a DEC VAX 11/785 running VMS 4.5. In some sections

of this document, necessary references are made to VMS utilities,

symbols, and other DEC system features. The interested reader

should consult DEC documentation for further details. The source

language is DEC's version of FORTRAN 77. Because certain EASIE

utilities involve code generation in the form of FORTRAN

subroutines, the prospective user should be familiar with FORTRAN

language constructs.

The first few sections of this document provide background

information on the program integration problem. The majority of

this document is organized as a tutorial whereby new terms and

concepts are introduced as they are encountered in the normal

course of the program integration process. A SIMPLE INTEGRATION

EXAMPLE section introduces the basic features of the EASIE tools,

defines the relevant terminology, il|ustrates the menu and

command driven user interface, and concludes with program

execution. EASIE provides an environment for both program

integration and execution. As the name signifies, A MORE COMPLEX

EXAMPLE section details additional features of the EASIE DBMS

tools using a more sophisticated program integration problem.

The last two sections are reference guides to the SYSTEM LIBRARY

PROCESSOR Menu Options and to the REVIEWER commands including

ranges, limitiations, capabilities, and defaults.

The architecture of the EASIE user interfaces has been

designed, as much as possible, to be independent of the database

management system (DBMS) software EASIE

Volume IV, SYSTEM INSTALLATION [3],

describes the considerations important to porting the EASIE

system to other computer systems using other DBMS

and computer hardware.

AND MAINTENANCE GUIDE

[4],

and

execution of

EASIE Volume Ill, PROGRAM EXECUTION GUIDE

independent of the other EASIE Volumes,

guidelines for the selection and

programs, building menus, reviewing data, and

input data. EASIE Volume I, EXECUTIVE OVERVIEW

information that is useful in determining

beneficial to a specific project or study.

software.

can be tlsed

provides the

application

editing program

[5], contains the

if EASIE would be

2.0 BACKGROUND

Over the past 25 years, the use of computer aids in

engineering has increased exponentially. Today, much work that a

few years ago might have taken weeks can be done in seconds.

Application programs are available for virtually all engineering

disciplines.

This growth has not been void of problems. While

information may be obtained at a faster rate and in greater

abundance, the absence of standardization and lack of

coordination among software developers has resulted in the

proliferation of computer programs unable to communicate data to

other programs. Although two programs may use the same data,

physical restrictions imposed by the computer environment may

inhibit the communication of the data between the programs. The

price being paid for this state of affairs is often the manual

transfer of data from one program to another with the associated

manpower loss, time delay, and potential for error

introduction. Several approaches can be taken to address this

problem. This document describes a set of software tools

designed to implement one approach used at LaRC for its

efficiency and flexibility. A brief example will serve to

compare these approaches.

Assume a modeling program (PROGA) has been purchased from

Company A and an analysis program (PROGB) from Company B. Among

the output from PROGA is the TOTAL MODEL MASS written to an

unformatted file. PROGB requires the TOTAL MODEL MASS for input,

but the program is designed to read it from a formatted file.

Logically, these programs could communicate data (TOTAL MODEL

MASS), though physically this communication is impossible due to

differing data environments (formatted versus unformatted

files). Consequently, some change must be made to enable the

transfer of data. This is typical of the problems faced when

several programs are to share data within a design activity.

At least three possible methods exist to facilitate

communication between programs under such circumstances:

(I) Modify one or both programs (program integration).

(2) Develop a translator to convert the output of PROGA
into an acceptable input format for PROGB (program
interfacing).

(3) Use a database management system (DBMS) to store the
output from PROGA into the database and retrieve the
input for PROGB from the database.

For this example, method (I) appears to be the simplest, most

efficient means to communicate data. PROGA can be modified to

output TOTAL MODEL MASS in a format acceptable to PROGB.

However, the real world is seldom so simple. In a realistic

example, PROGA would likely produce abundant output of which only

a portion would be required by PROGR. Format conversion would

not be the only problem to solve. All possible output statements

would have to he located and understood before the format

conversion could be completed. In a large, complex program, this

would not be a trivial task.

The scenario can be worse.

inputs to several programs in

Suppose PROGA is to supply

the integrated system, each

requiring data in different formats. PROGA would require

modifications to output, possibly the same data, to several

output files (additional overhead).

5

_Ithough program complexity may render this approach

impractical, purchasing agreements may make it impossible. Many

software products are acquired without access to source code and

therefore may not be modified.

For this example, method (2) solves some of these

problems. Although the internal structure of programs is often

not readily accessible (complex code or no code), the inputs to

and outputs from programs are usually well documented. A

translator program could be developed to read as input the output

of PROGAand write an output file acceptable as input to PROGB.

This method has the advantage of requiring no modification to

either program, but introduces additional overhead as it reads,

c_nverts, and writes. Also, a separate translator would be

required for each application.

Method (3) may be implemented as a variation of either

method (I) or method (2). Using method (3), data are retrieved

from and stored in a relational database rather than converted

directly to another format. Using the simplified example, PROGA

could be modified to store TOTAL MODEL MASS directly into a

relational database; or if no source code is available, a

translator could be developed to read the output file from PROGA

and store TOTAL MODEL MASS in the database. PROGB could then

retrieve TOTAL MODEL MASS from the database by using either

method (I) or (2). In some cases, method (3) imposes additional

overhead because the data must be manipulated by the DBMS being

used and programmers with experience in using the selected DBMS

are required. However, there are significant advantages to be

gained when program integration is accomplished thmough method

(3). A DBMS is a collection of tools designed for fast random

access storage and retrieval of data allowing organization and

referencing of data by logical relationships without concern for

the physical file organization. If such tools are used

exclusively in program integration, they establish standards for

the physical storage of data and reduce communication problems

associated with the data environment (differing formats).

Because of their random access capabilities, the DBMS tools

may increase efficiency in cases where small amounts of data are

required from a large output. Suppose PROGAoutputs TOTAL MODEL

MASS at the end of a large output file. By method (2), if PROGB

and PROGCrequired TOTAL MODEL MASS, translators for both would

have to process the entire output file to locate the datum.

Using a DBMS, after the output from PROGA is stored in the

database, TOTAL MODEL MASS may be retrieved quickly without

unproductive processing. But most important, any new programs

added to the design activity that require output from PROGA can

access that datum without requiring further modification to PROGA

or its translator.

Although the advantages provided through method (3) are

attractive, especially when numerous programs are to be

coordinated, many programmers are hesitant to use a DBMS because

of the additional knowledge required. Not only are programmers

experienced with the interface to the DBMS required, but the

portability of the resultant software is reduced. If the

software is to be moved to another computer, the new machine must

have the selected DBMS. Conversions to other DBMS's are usually

costly and time consuming. Even conversions from one computer to

another, using the same DBMS, may require substantial software

changes.

An alternative is required that retains the advantages of

using a DBMS while minimizing the impact on the program

integrator. The EASIE data management tools are designed to

offer such an alternative. EASIE does not eliminate the need for

knowledge of a relational approach to database management, but

does reduce the need for specific knowledge of the interface to

the selected DBMS. These tools, which are addressed in the

remainder of this document, are based upon a processor which

makes the DBMS transparent to the user, while providing the

functions needed to quickly integrate (interface) programs around

a central database. The speed and versatility of the DBMS

approach make it the most productive method for the development

of a system of integrated programs.

3.0 THE EASIE TOOLS FOR DATABASE MANAGEMENT AND PROGRAM

INTEGRATION

The EASIE DBMS tools allow programmers to work at a higher

level of abstraction than that provided through conventional

DBMS's. Using a user-friendly, interactive processor, the schema

of the database is described (relation names and descriptions;

attribute names and descriptions; data types; dimensions; and

units). Next, the data (program input or output) required for

each particular application are identified in an input or output

template. This template information, referred to as the SYSTEM

LIBRARY, is stored in the database and aids in the automation of

several tasks in the integration effort. Having described the

required relations, the initial database schema is automatically

produced. Using a generic editor, referred to as the REVIEWER,

and the template specification for the application program, a

consistent systematic method is provided to review/modify the

input or review the output for any program. Also, using the

template specification, FORTRAN subroutines are generated

automatically to retrieve data (for an input template) from the

database into a program's local variables. Similarly,

subroutines are generated to store data (for an output template)

from local variables into the database.

Using the EASIE tools, conventional tasks for database

integration are substantially reduced, program maintenance is

simplified, and the program integration task is more straight-

forward. In the following sections of this document, a simple

example using EASIE is presented providing the minimum discussion

needed to complete the example. A later section presents a more

complex example using additional EASIE techniques. The final

sections provide a complete reference guide to the EASIE tools.

3.1 Parameter Versus Attribute

Conventionally, a relational DBMS allows for organization of

data into tables, called relations, consisting of rows (tuples)

and columns (attributes) which provide storage for the matrix of

data. Most DBMS's do not provide a convenient means for storing

parametric data (data not representable by a matrix). For

example, in a modeling system, mass and volume of parts may be

represented by a table:

Part Name Mass Volume
TOP T-_ I00
MIDDLE 20 200
BOTTOM 30 300

A database relation representing this table may be defined with

attributes: part name, mass, and volume. Each part would have a

tuple entry giving the actual values for each part. But how

would the total model mass and total model volume be stored?

Here a relation (matrix) representation is not appropriate.

EASIE provides for a special relation type defined as PARAMETER

type. A parameter relation is a collection of parameters of

varying types and dimensions that logically belong together.

Thus, a parameter relation could be defined as follows:

Parameter name Value
?_TMASS
TOTVOL 600

to contain the values for total model mass (TOTMASS) and total

model volume (TOTVOL).

I0

In EASIE,

ATTRIBUTE type.

the conventional matrix relation is called

3.2 Integration Using The Conventiona| Approach

To integrate a program with a DBMS, the following steps must

be taken:

(1) Examine the program
from the database

(output).

and identify all data to be read

(input) or written to the database

(2) Group the data into relations according to

logical relationships among the data accounting for

various types, dimensions, etc. Organize the

retrieval/output of data from/to the database required

by each program.

(3) Using the DBMS, create a database
schema for the required relations.

containing the

(4) Using the FORTRAN interface library of the DBMS, write

FORTRAN code to retrieve input from the database and

store output into the database.

(s) Because the interactive data modification capabilities
available with the DBMS are often not suitable for

efficient data modification, a FORTRAN processor may be

required to facilitate input modification and output
review. This processor may be called from within the

program (integrated) or executed as pre- (input review)

or post- (output review) processor to the program

(interfaced).

Often steps (3), (4), and (5) are the most difficult, time-

consuming, and error-prone activities. They also represent the

portion of this process that requires specific knowledge of the

selected nRMS. Using the EASIE tools, these steps are automated

to the extent that schemata, FORTRAN database I/0 routines, and

the review capabilities are produced without the need for such

knowledge.

11

3.3 Integration Using EASIE

Within EASIE, information about the database and program

interaction with the database is recorded using an interactive

program, the SYSTEM LIBRARY PROCESSOR. A data dictionary is

constructed containing the name and description of each relation;

and the name, type, dimension, description, and units of each

parameter/attribute of the relation. A template library is

constructed containing the input and output templates required by

programs integrated with the database. A template is a

description of all relation subsets required as input/output

to/from a program. A program library is constructed storing

information about each program integrated into the system; i.e.,

location, execution procedure, input and output templates, etc.

All of this information is stored in a RIM database, The SYSTEM

LIBRARY.

Once this information is recorded in the SYSTEM LIBRARY

datahase, the SYSTEM LIBRARY PROCESSOR can automatically produce:

(I) an input file or FORTRAN program to create the schema

for the database with which the programs will be

integrated.

(2) FORTRAN subroutines to retrieve input and store output

from/to the database for each program (using the input

and output templates). Data are retrieved/stored
from/in the database into/from variables in the

subroutines that have the same names as the parameters/
attributes in the target relation. All communication

code using the FORTRAN interface to the DBMS is con-

structed by the processor.

(3) an input file to a generic REVIEWER program. The

file consists of an input or output template and
instructs the REVIEWER on which information to extract

from the database for review or modification. There-

fore, the one REVIEWER program may be used to retrieve

or modify data for any application.

12

After creating the schema for the database using output from

the processor, default input data may be established using the

REVIEWER providing one or more Master databases [6] exist and

which may be copied and modified. The generated FORTRAN routines

to retrieve/store data must be modified by the integrator to

communicate data to/from the program by:

(i) adding parameter and/or common blocks to the subroutine
to pass the values from/to the variables declared by
the processor. Also, the routine calling statement
must be placed at the appropriate location in the
applications program (program integration).

(2) creating a preprocessor (for input templates) or

post-processor (for output templates). The routines
are modified to create a stand-alone program that,

after reading the database, will write an input file

for the program or, after reading the output file,
store the data in the database (program inter-

facing).

In either case, datahase interaction has been automated.

13

4.0 A SIMPLE INTEGRATION EXAMPLE

The following is a step-by-step example to illustrate the

integration of a program with a database. Suppose a program,

BOX, is to be integrated with a database. BOX accepts as input

the length, width, and height of a box and computes its volume.

Step 1: Length, width, and height (real numbers of dimension 1)
are required as input in units of meters(M). Volume
(real number of dimension I) is output in cubic meters
(M**3). To aid in the process of defining relations, a
standard form is suggested (Appendix F).

Step 2: All values are parameter type (represent no row/column
relationship) and will be placed in a single relation
DIMEN. Before proceeding to steps (3), (4), and (5),
the SYSTEM LIBRARY must be constructed.

4.1 Constructing The SYSTEM LIBRARY

The SYSTEM LIBRARY is physically a RIM database and the

schema must be established before entering data. The SYSTEM

database is initially created by executing the VMSLIBRARY

command:

nTOAIDE:[RUILD DICT]BUILDDICT.COM<CR>

(See Appendix G for definition of symbols and logicals in VMS).

This places in the current directory a RIM database named DICT

containing the schema for the SYSTEM LIBRARY. The RIM database

consists of three files: DICTI.DAT, DICT2.DAT, and DICT3.DAT.

The SYSTEM LIBRARY PROCESSOR is executed in the same

directory containing the SYSTEM LIBRARY database by the command:

RUNDICT<CR>

resulting in the display of the following prompt.

ENTER NUMBER OF CHARACTER/WORD FOR TARGET SYSTEM:
4 FOR RIM ON PRIME/VAX

10 FOR RIM ON NOS

2 FOR SDRC/PRL

14

In this example, FORTRANcode is generated to interact with

a RIM database on a VAX computer. Therefore, the selected

response is 4.

The next display reveals the processor's main menu.

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION

BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE

BRV - TO BUILD A REVIEWER INPUT FILE

BP - TO BUILD PROGRAM DESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS
PR - TO PRINT A RELATION

X - TO EXIT

4.2 Defini.g The Data Dictionary

The first task is to define the required relations (only

DIMEN in this example). Thus BR is selected, resulting in a

series of queries to define a relation.

ENTER RELATION NAME (OR <CR> WHEN DONE):

Enter the relation name "DIMEN" <CR>.

ENTER I FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

DIMEN is to be parameter type (enter 1 <CR>).

ENTER RELATION NESCRIPTION (80 CHARACTERS):

The relation description is used to later identify contents of a

relation. Enter BOX DIMENSIONS.

ENTER YOUR NAME (20 CHARACTERS):

The name of the relation creator may be useful at a later time as

new programs are integrated. Enter the creator's name (the

current date is also recorded). Each parameter in the relation

DIMEN must now be described following the prompt.

• 15

DEFINE THE RELATION DIMEN:

The information necessary to describe a parameter is requested.

Recall that the first parameter is named LENGTH, of type REAL, of

dimension i, and is measured in meters M. The parameter

description is defined as BOX LENGTH. The following sequence of

prompts and user responses (underlined) define the parameter

length.

ENTER PARAMETER NAME (OR <CR> WHEN DONE)>
LENGTH<CR>
I"]_7"I_-IT--P_]_-A-METER TYPE>
RKCR>
-E-NE-_-E-R-PARAMETER DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
I<CR>
DIMENSION = i
ENTER PARAMETER DESCRIPTION>
BOX LENGTH<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
M<CR>
ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

-_T--TO ENTER THE PARAMETER LENGTH INTO THE DATABASE

(Y/N) (<CR>=N):
Y<CR>

Output format is entered as a <CR> to indicate that the default

format for this type (real) is to be used by the REVIEWER.

Following the last entry, the sequence is repeated for width

(WIDTH, R, I, BhX WIDTH, M, <CR>, Y), height (HEIGHT, R, I, BOX

HEIGHT, M, <CR>, Y), and volume (VOLUME, R, i, BOX VOLUME, M**3,

<CR>, Y). If a mistake is made during the sequence, an N on the

final response will eliminate the entire parameter definition

from the DATA DICTIONARY, and the sequence for that parameter may

be reentered. When the first prompt of the sequence appears

following the definition of the final parameter/attribute, by

entering a <CR> will end the relation DIMEN definition and the

16

following prompt will be repeated:

ENTER RELATION NAME (OR <CR> WHEN DONE):

The entry of another name would allow the definition of another

relation. Because the example has only the relation DIMEN, a

<CR> will end the DATA DICTIONARY definition and return to the

main menu.

When a good working knowledge of EASIE is achieved, an

implementer of a program requiring a large amount of input data,

should use the BUILD EASIE utility described in Appendix E.

4,3 Defining The Template Library

The second step is to define the TEMPLATE LIBRARY. Two

templates are required for the application program BOX. The

input template (named BOXIN) in effect makes the statement, as

input to program BOX, LENGTH, WIDTH, and HEIGHT are to he

retrieved from the relation DIMEN. Similarly, the output

template (named BOXOUT) in effect makes the statement, as output

from program BOX, VOLUME is to be stored in the relation DIMEN.

The main menu command, BT, is selected resulting in a series

of queries to define a template.

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):

Enter the input template name BOXIN.

ENTER i IF INPUT TEMPLATE
OR 2 IF OUTPUT TEMPLATE

BOXlN, an input template, defines data to be retrieved from the

database for input to the program BOX. The selected choice

is i. Following the prompt:

IDENTIFY ALL INPUT RELATIONS FOR THE TEMPLATE

17

the information describing data to be retrieved is requested.

Recall that input to the program BOX consisted of LENGTH, WIDTH,

and HEIGHT from the relation DIMEN. Following the prompt:

ENTER RELATION NAME (OR <CR> WHEN DONE):

the name DIMEN is entered. Because DIMEN was previously defined

as a parameter type relation, the response to the prompt

ENTER I FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

is i and the opportunity to review its parameters is provided by

the following prompt:

THE RELATION DIMEN IS ALREADY DEFINED AND HAS 4 PARAMETERS.

DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):

An affirmative response, Y, results in the following display

depicting necessary parameter information:

PARAMETER NAME DIM1 DIM2 DIM3 TYPE

LENGTH REAL

WIDTH REAL

HEIGHT REAL

VOLUME REAL

NUMBER OF CHARACTERS

Following this display or a negative response, N, the next prompt

provides the names of parameters to be retrieved.

ENTER 0 IF ALL PARAMETERS ARE TO BE RETRIEVED
OR i TO READ PARAMETERS TO BE RETRIEVED FROM A FILE

OR 2 TO ENTER PARAMETERS TO BE RETRIEVED FROM THE TERMINAL

A response of 2 allows input of the desired parameters by

prompting,

ENTER PARAMETER NAMES EACH FOLLOWED BY <CR>:

(PARAMETER NAME=<CR> WHEN D_NE)

Recall that only LENGTH, WIDTH, and HEIGHT are required from

DIMEN as input. A response of,

LENGTH<CR>

18

HEIGHT<CR>

<CR>

ends the selection of parameters from the relation DIMEN and the

inquiry,

YOU HAVE IDENTIFIED 3 PARAMETERS TO BE RETRIEVED

OK TO ENTER THE RELATION nIMEN INTO THE TEMPLATE B_XIN

(Y/N) (<CR>=N):

allows those selections to be entered into the template BOXIN

(affirmative response).

At this point, parameter/attributes from other relations

could be added to the template BOXIN following the repeated

prompt.

ENTER RELATION NAME (OR <CR> WHEN DONE):

As no other relations are required, a <CR> completes the series

of queries for defining a template and iterates the series for

subsequent template definitions. The following sequence

il|ustrates the definition of the output template ROXOUT (user

responses are underlined):

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
BOXOUT<CR>

INPUT TEMPLATE

OR 2 IF OUTPUT TEMPLATE

2<CR>

IDENTIFY ALL OUTPUT RELATIONS FOR THE TEMPLATE

ENTER RELATION NAME (QR <CR> WHEN NONE):
DIMEN<CR>

ENTER i FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

I<CR>

THE RELATION DIMEN IS ALREADY DEFINE[) AND HAS

PARAMETERS.

DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):

N<CR>
_ 0 IF ALL PARAMETERS ARE TO BE REPLACED

OR I TO READ PARAMETERS TO BE REPLACED FROM A FILE

OR 2 TO ENTER PARAMETERS TO BE REPLACED FROM THE

TERMINAL

2<CR>

19

ENTER PARAMETER NAMES EACH FOLLOWED BY <CR>:
(PARAMETER NAME=<CR> WHEN DONE)
VOLUME<CR>
<CR>

YOU HAVE IDENTIFIED I PARAMETERS TO BE REPLACED
OK TO ENTER THE RELATION DIMEN INTO THE TEMPLATE

BOXOUT (Y/N) (<CR>=N):
Y <CR>

'E"N-T'E'-RRELATION NAME (OR <CR> WHEN DONE):
<CR>
ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
<CR>

The final <CR> returns to the processor's main menu marking the

completion of the TEMPLATE LIBRARY definition.

STEP 3:

4.4 Constructing The Database Schema

Having completed the DATA DICTIONARY and TEMPLATE LIBRARY

descriptions, an input file to RIM must be created for database

schema definition. The command BS allows the option for either

of two DBMS's.

ENTER I FOR RIM SCHEMA

OR 2 FOR SDRC/PRL SCHEMA

Because RIM is the DBMS for this example, I is entered. The name

of a file to contain the schema definition is supplied following

the prompt.

ENTER SCHEMA DUMP FILE NAME

OR "Q" TO RETIWRN WITHOUT WRITING A FILE

Entering SCHEMA.DAT (name selection is arbitrary) results in a

file of that name in the current directory containing the schema

definition. The schema for a single relation may be written to

the file by naming the relation following the prompt:

ENTER RELATION NAME FOR SCHEMA DUMP

OR <CR> FOR COMPLETE DATABASE SCHEMA DUMP

OR "Q" TO QUIT

20

The usual response (as in this example) is to create the schema

for the complete database by entering a <CR>.

Outside the EASIE processor, interactive RIM must be

executed by issuing the following single commands (APPENDIX G),

RUNRIM

INPUT SCHEMA<CR>

which creates the schema for the database under the default name

nATADB.

STEP 4:

4.5 Producing FORTRAN Routines For Input And Output To/From The
Database

Most DBMS's provide a FORTRAN interface library of

subroutines to access the database. Data are transferred from/to

a relation one row (tuple) at a time using a one-dimensional

array. If the attribute types of the relation differ (integer,

real, character, etc.), an integer and real array must be

equivalenced for storage and packing/unpacking of the storage

array with the data in the order of the attributes in the

relation. (Character data may be packed into either the integer

or real array.) In addition to packing/unpacking the storage

array, other functions must be performed by these FORTRAN

routines. The database must be opened. The relations to be

accessed must be identified, and the search or sort conditions

for locating the data of interest must be established. The DBMS

error codes and row counts must be controlled. Without automatic

procedures to generate such code, a substantial amount of code

would need to be written by the program integration team and then

21

tested and proven correct, often a time-consuming activity.

Frequently, this new code is scattered throughout the existing

code, making future maintenance efforts more diffic_lt.

Using the BF command, an input or output template is used to

automatically produce FORTRAN code for database interaction.

Data are either retrieved from the database and stored into

program variables (input template) or extracted from program

variables and stored in the database (output template). FORTRAN

declarative statements (name, type, and dimension) for these

program variables are automatically generated by the processor.

Variable names produced by the processor match the names of the

parameters or attributes as they exist in the database. The only

responsibility of the program integration team is to communicate

these variables to the prngram.

After issuing the BF command, the selected template name is

supplied following the prompt:

ENTER TEMPLATENAME
OR <CR> FOR ALL RELATIONS
OR "Q" TO QUIT

To produce input routines for this example, BOXlN is entered.

Next, the file name to contain the input subroutines is provided

following the prompt:

ENTER GETDATA FILE NAME
OR "Q" TO RETURN WITHOUT WRITING A FILE.

Arbitrarily, B_XIN.FOR is entered. The next prompt:

Dn YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)

provides the opportunity

parameter/attribute names in

characters (adhering to ANSI

to reduce

the data

standards).

eight character

dictionary to six

This is done by

22

truncation of any characters beyond six and may result in

variable name conflict. Because a VAX will accept eight

character variable names, the answer is N. The final prompt:

DO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES?
(Y/N) (<CR>=N)

allows variable names tQ be different from parameter/attribute

names in the data dictionary. Suppose the predefined parameter

named LENGTH was to be assigned to an existing variable named L

in the program. An affirmative answer to this inquiry would

provide the opportunity to assign the value of LENGTH in the

database into the variable L instead of the variable LENGTH. In

this example, the parameter names are satisfactory for variable

names. The answer is N, and the processor returns to the main

menu.

Once produced, the file BOXIN.FOR contains source code

for a driver subroutine (GETDATA) and for one subroutine for

each relation to be accessed (I in this case). The driver

subroutine GETDATA__ is the only routine that need be modified by

the program implementer and may be seen in figure I. Notice that

the variables LENGTH, WIDTH, and HEIGHT, are all typed REAL with

no dimension, and the database is given the default name of

DATADB, reference the statement DBASE =(8HDATADB). After

the call to the subroutine RIO01 , the variables LENGTH, WIDTH,
I

and HEIGHT will contain the values in the database for the

parameters LENGTH, WIDTH, and HEIGHT. The only changes required

by the program integrator are those necessary to communicate the

variables back to the program via either arguments lists or

common blocks. The parameters could be added to the CALL and

23

SUBROUTINE statements for the GETnATA subroutine. An

alternative, and the method used in this example, is to add a

common block containing the variables LENGTH, WIDTH, HEIGHT,

and VOLUME to the GETDATA subroutine under the assumption

that this common block also exists in the calling program.

SUBROUTINE GETDATA

COMMON /DBNAME / DBASE ,DBOPN__
REAL*8 DBASE
LOGICAL DBOPN

C
C*** THE PARAMETERS FOR THE RELATION DIMEN

C

C

C

C

C
C
C

C

C

REAL LENGTH

REAL WIDTH

REAL HEIGHT

LNAD REQUIRED COMMON BLOCKS HERE:

INCLUDE 'BOXIN.COMMON/LIST'

_RASE = (SHDATADB)

CALL R1001 (LENGTH,WIDTH,HEIGHT)

MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:

INCLUDE 'BOXIN.ASSIGN/LIST'

RETURN

END

ARE:

Figure 1. - Subroutine GETDATA

Notice the comment,

C LOAD REQUIRED COMMO_ BLOCKS HERE:.

Directly below is the VAX FORTRAN INCLUDE statement added by the

implementer to the automatically-generated code. To add common

blocks, the program integrator need only create a file using the

name B_XIN.COMMON containing the required common blocks. No

24

changes are required in the file BOXlN.FOR. Thus a file named

BOXIN.COMMONis then created containing the common block:

COMMON/INDIMEN/ LENGTH,WIDTH,HEIGHT.

Also notice the comment,

C MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:

following the call to the SUBROUTINE RIO01 . If, for example,

the database contained LENGTH in meters and the program expected

input of LENGTH in feet, an assignment statement could be added

at this point to make the proper unit conversion. As this is not

the case in this example, no code additions are required here,

and the statement,

INCLUDE 'BOXIN.ASSIGN/LIST'

should be deleted. The file BOXIN.FOR is now ready for

compilation and linkage with the example program.

The BF command must be re-executed for the output template

BOXOUT. The following sequence of prompts and user responses

(underlined) build the file BOXOUT.FOR containing the FORTRAN

routines required to store VOLUME into the database,

BF<CR>
I_-_FI_-R--TEMPLATE NAME

OR <CR> FOR ALL RELATIONS

OR "0" TO QUIT
BOXOUT<CR>

ENTER PU_ATA FILE NAME

OR "Q" TO RETURN WITHOUT WRITING A FILE
BOXOUT. FOR<CR>

DO VOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
N<CR>

DO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES?

(Y/N) (<CR>:N)
N<CR>

Similar to the file BOXIN.FOR, BOXOUT.FOR contains a driver

SUBROUTINE PUTDATA and one subroutine for each relation to be

25

accessed (I in this case).

in figure 2.

The SUBROUTINE PUTDATA

SUBROUTINE PUTDATA

COMMON /DBNAME / DBASE ,DBOPN
REAL*8 DBASE
LOGICAL DBOP_

C
C*** THE PARAMETERS FOR THE RELATION DIMEN

REAL VOLUME
C
C
C

C
C
C

C

C

C

LOAD REQUIRED COMMON BLOCKS HERE:

INCLUDE 'BOXOUT.COMMON/LIST'
DBASE = (8HDATADB)

MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:

INCLUDE 'BOXOUT.ASSIGN/LIST'

CALL WIO01 (VOLUME)

RETURN

END

Figure 2. - Subroutine PUTDATA

may be seen

ARE:

Notice that the variable VOLUME is typed REAL with no

dimension, and again the default database name DATADB is

assigned to the variable DBASE . Noting the FORTRAN INCLUDE

statement, the program implementer need only create a file named

BOXOUT.COMMON containing the statement:

COMMON /OUTDIMEN/ VOLUME.

The common variable VOLUME is assumed to contain the proper

value upon entry to the SUBROUTINE PUTDATA_ . Any necessary

format changes or other reassignments need to be made prior to

the call to the SUBROUTINE WIO01 m. As none are required here,

the statement,

26

INCLUDE 'BOXOUT.ASSIGN/LIST'

should be deleted. Immediately following the call to WIO01 , the

value of VOLUME is stored in the database. With the creation of

the file BOXOUT.COMMON, the file BOXOUT.FOR is ready for

compilation and linkage with the example program.

4.6 Linking The Example Program

The original program BOX is seen in figure 3A. Notice that

length, width, and height are read from the file BOXIN.DAT and

Volume is written to the file BOXOUT.DAT.

PROGRAM BOX

COMMON /INDIMEN/ LENGTH,WIDTH,HEIGHT
REAL LENGTH
COMMON /OUTDIMEN/ VOLUME
OPEN(8,FILE='BOXIN.DAT')
READ(8,*)LENGTH,WIDTH,HEIGHT
CLOSE(8)
VOLUME = LENGTH * WIDTH * HEIGHT
OPEN(9,FILE='BOXOUT.DAT')

WRITE(9,*)VOLUME

CLOSE(g)
END

Figure 3A.- Origina| Program Box

The modified example program (contained in the file BOX.FOR)

is seen in figure 3B.

PROGRAM BOX
COMMON /INDIMEN/ LENGTH,WIDTH,HEIGHT
REAL LENGTH

COMMON /OUTDIMEN/ VOLUME

CALL GETDATA

VOLUME = LENGTH * WIDTH * HEIGHT

CALL PUTDATA

END

Figure 3B.- Modified Program Box

27

Notice that former input data transfer statements (FORTRAN

OPEN, READ, and CLOSE) are replaced by a single call to the

SUBROUTINE GETDATA___. Former output data transfer statements

(OPEN, WRITE, and CLOSE) are replaced hy a single call to

the SUBROUTINE PUTOATA _. Both common blocks (INDIMEN and

O!}TDIMEN) have been included. Following the call to GETDATA

(input of LENGTH, WIDTH, and HEIGHT), VOLUME is computed and,

through the call to PUTDATA , stored in the database. The file

BOX.FOR is compiled and linked via the following command sequence

(created in the BOX.COM file), generating the executable file

BOX.EXE.

SFOR BOX.FOR
$FOR BOXIN.FOR
$FOR BOXOUT.FOR
SLINK BOX.OBJ -

+ BOXIN.OBJ -
+ BOXOUT.OBJ -
+ LOADRIM/LIBRARY

SEXIT

STEP 5:

4.1 Creatimg REVIEWER Input Files

To this point, the DATA DICTIONARY (DICT) and TEMPLATE

LIBRARY (BOXIN, BOXOUT) have been created. Using them, a

database schema, DATADB, and FORTRAN input/output routines

(BOXIN.FOR, BOXOUT.FOR) have been created. These routines have

been linked with the example program BOX which is now ready for

execution by obtaining its input from the database DATADB.

However, no values for LENGTH, WIDTH, and HEIGHT have been

established in the database. Execution at this point would

retrieve the value of zero (by default) for all three values

resulting in a computation of zero for volume.

28

Step (5) of the integration using the conventional approach

involves the use of the EASIE processor called the REVIEWER.

Using the BRV command, a template is used to create an input

file for a standard REVIEWER program. Using the REVIEWER, input

values are changed and output values are examined.

After entering the command BRV, the prompt:

ENTER DIRECTORYLOCATION FOR REVIEWER INPUT FILES
OR <CR> TO CREATEA LOCAL REVIEWERFILE

allows the user to specify a directory location for the REVIEWER

input file. This is important when using the directory structure

recommended for use [6,7] with the EASIE EXECUTIVE. For this

example, the REVIEWERinput file remains in the current directory

by entering a carriage return. In response to the prompt:

ENTER TEMPLATE NAME

OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES

OR "O" TO OUIT

the template name BOXIN is supplied. A file is thus created in

the current directory under the name BOXIN.REV containing input

directing the REVIEWER to retrieve LENGTH, WIDTH, and HEIGHT from

the relation DIMEN. The REVIEWER allows user modification and

replacement of the data.

Similarly, the following sequence of prompts and user

responses (underlined) create a file in the current directory

under the name BOXOUT.REV containing input directing the REVIEWER

to retrieve VOLUME for review:

BRV<CR>
I'-RTE'IT-ITIRECTORY LOCATION FOR REVIEWER INPUT FILES

OR <CR> TO CREATE A LOCAL REVIEWER FILE

<CR>
_R TEMPLATE NAME

OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES

OR "Q" TO QUIT
BOXOUT<CR>

29

4.8 Executing The Example Program

Having created both the input file for the REVIEWER

(BOXIN.REV) and the executable file (BOX.EXE), input to the

program BOX may be modified in the database by executing the

command:

REVIEW BOXINKCR>.

This will execute the REVIEWER using as input the file

BOXIN.REV. Immediately the display in the top half of figure 4

will appear. This demonstrates how the use of the SYSTEM LIBRARY

PROCESSOR tools can automate most of the integration tasks even

including an editing capability for data needed by the integrated

programs.

Issuing the commands (descriptions in brackets are not a

part of the command),

M 1 5<CR>
M 2 IO<CR>

M 3 15<CR>

R<CR>

[MODIFY LENGTH TO 5 METERS]
[MODIFY WIDTH TO 10 METERS]

[MODIFY HEIGHT TO 15 METERS]

[REDRAW THE SCREEN]

will modify the values for LENGTH, WIDTH, and HEIGHT and redraw

the screen with the new values. The Final screen display is

shown in the bottom half of figure 4. Finally, the command:

E<CR>

will replace the values in the database.

Execution of the example program will now retrieve these

input values, compute VOLUME,

database. The VMS command,

RUN BOX.EXE<CR>

will execute BOX.

and replace VOLUME in the

3O

Issuing the VMS command:

REVIEW BOXOUT<CR>

will execute the REVIEWER using as input the file BOXOUT.REV.

Immediately the display in figure 5 will appear. Note the

correct value of 750.000M 3 has been computed for the parameter

VOLUME.

4.9 Conc|uding The Simple Example

The following is a review of the process for integrating the

program BOX. In the previous example, the SYSTEM LIBRARY

PROCESSOR was used to:

(i)

(2)

(3)

(4)

(5)

Define a parameter relation (DIMEN).

Define input (BOXIN) and output (BOXOUT) templates

accessing some portion of the relation DIMEN.

Build an input file for

(SCHEMA.DAT) for DIMEN.

RIM to create the schema

Build FORTRAN subroutines (BOXIN.FOR and BOXOUT.FOR)

to access portions of the database as described in the

input and output templates.

Build input files for the REVIEWER to review/modify
data described by the input and output templates

(BOXIN.REV and BOXOUT.REV).

After modifications to the program BOX.FOR (to call the FORTRAN

routines mentioned in step 4 above) and modifications to the

input and output subroutines (that pass data to and from

BOX.FOR), the three files, BOX.FOR, BhXIN.FOR, and BOXOUT.FOR

were compiled and linked. Executing the REVIEWER using the input

template BOXIN to estahlish LENGTH, WIDTH, and HEIGHT, was

followed by execution of BOX (BOX.EXE) which stored the resultant

VOLUME into the database. The computed value for VOLUME could be

reviewed through execution of the REVIEWER using the output

31

template BOXOUT.

To aid in the variable definition task, the EASIE Form I as

explained in Appendix F may be useful. Notice that after

designing the relations and templates (work that must be done in

some form no matter what integration approach is used), the

relations are placed in the DATA DICTIONARY. Anyone familiar

with a relational DBMS (such as RIM) will recognize that this

procedure, with the exception of defining parameter/attribute

descriptions and units, is not more difficult than the

conventional approach to define the database schema. Defining

the templates may be argued to be additional work, but the

procedure is simple and once completed much of the remaining

difficult work required by the conventional approach is

automated. Production of the sche_a is accomplished by

instructing the SYSTEM LIBRARY PROCESSOR to create an input file

which is read by RIM. Routines to interact with the database

using the FORTRAN interface library of RIM are automatically

produced leaving the program implementer responsible for the task

of defining the FORTRAN communications of data from one

subroutine to another (no special RIM knowledge required). Input

to the generic REVIEWER program is automatically produced for any

given template, and data can be reviewed or modified using the

same techniques for any template, thus for any program. Recall

that all steps but the actual execution are performed once for

each program by the integration team. The designer/engineer

performs the final steps of data review, data modification, and

program execution.

Obviously, many of the tedious, error-prone tasks required

32

using the conventional approach have been eliminated. However,

other advantages may not yet be apparent. Because the FORTRAN

I/0 routines are produced automatically and data modification is

accomplished using the REVIEWER, potentially any relational DBMS

may be used. Originally, the EASIE tools were implemented using

A Relational Information Management System (ARIS). Later,

because of changing requirements at Langley Research Center, the

tools were converted to use RIM. As needs changed, the

capability to use PEARL (Structural Dynamics Research

Corporation's I-DEAS system [8]) was added. During these

transitions, no changes were required in the EASIE integrated

programs. As the desired DBMS was changed, only new FORTRAN I/0

routines and REVIEWER input files needed to be generated using

the modified SYSTEM LIBRARY PROCESSOR. Since the REVIEWER uses

the same commands and presents the data the same, there is no

impact in this area regardless of the selected template or DBMS.

Also, future maintenance efforts have been reduced. Anyone

having worked on a large system of programs integrated into a

DBMS using the conventional approach understands how such a

system can create maintenance problems. Database interaction

code written by a large group of programmers may be scattered

throughnut many I/0 processors and programs. Coding standards

may be established, hut are difficult to enforce. Using EASIE,

coding standards are established and enforced by using the SYSTEM

LIBRARY PROCESSOR. Hand-written I/0 processors are replaced by

the REVIEWER. I/0 subroutines are written by the processor, thus

eliminating the need for a maintenance programmer to read or

33

write database interaction code.

Conventional DBMS's usually provide a means to "dump" data

to an ASCII file for data transfer from one database to

another. If the data are logically the same but the schemata are

different, conventional dump utilities cannot accommodate

different schemata. Using EASIE, FORTRANroutines can he created

to retrieve from one database and store in another. The

programmer need only assign logically identical data from one

variable to another.

34

BOX DIMENSIONS

CATEGORY I: DIMEN

L f PRESENT VALUE I NAME r SUBSCRIPT ! DESCRIPTION r UNITS

1 I O.O00000O ! LENGTH t ! BOX LENGTH I M

2 i 0.0000000 ! WIDTH I I BOX WIDTH I M

3 i 0.0000000 ! HEIGHT l ! BOX HEIGHT ! M

M n : modify value (n = line#,name(subscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:

>M 1 5<CR>

>M 2 IO<CR>

>M 3 15<CR>

>R<CR>

CATEGORY I: DIMEN

BOX DIMENSIONS

L ! PRESENT VALUE ! NAME I SURSCRIPT ! nESCRIPTION f UNITS

I _ 5.0000NO0 ! LENGTH _ _ RnX t.ENGTH _ M

2 i 10.0000000 ! WIDTH i ! BOX WIDTH i M

3 v 15.000000Q ! HEIGHT t i BOX HEIGHT i M

M n : modify value (n = line#,name(subscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:

>E<CR>

Figure 4. - REVIEWER Display of Length, Width, and Height

35

BOXDIMENSIONS
CATEGORY I: DIMEN

IIIII _IIIlllIIIIIIIIIIIIIIIIIIIIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIiiI

L ! PRESENT VALUE ! NAME t SUBSCRIPT ! DESCRIPTION | UNITS

i w 750.0000000 ! VOLUME ! ! BOX VOLUME w M**3

M n : modify value (n = line#,name(suhscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:

>Q<CR>

Figure 5. - REVIEWER Display of Volume

36

5.0 A MORE COMPLEX EXAMPLE

While the simple example does illustrate the major functions

of the SYSTEM LIBRARY PR(_CESSOR and the standard flow of the

program integration task, some additional capabilities available

through the EASIE system may require further explanation. To

accomplish this, a second example will be described. For the

sake of brevity, the user prompts and proper responses are not

embedded within the discussion, hut rather are included in

Appendix A. No step-by-step reference will be made to this

appendix. It is highly desireable to follow along the printed

screen text during the disc#ssion.

In this example, the following new features will be

demonstrated :

(I) The use of Attribute relations (in addition to
Parameter relations).

(2) The use of character and integer data types and multi-
dimensional data structures.

(3) Progra_q interfacing in addition to program integration.

5.1 A Description Of The Programs

Suppose two commercially available programs require

communication. The program MAKGEO is available with source code

(Appendix B) and receives as its input the length, width, and

height of a box. MAKGEO outputs the geometry for the box

centered at the origin with length along the X-axis, width along

the Z-axis, and height along the Y-axis. The geometry output

consists of an array of point coordinates (X, Y, Z) and an array

of faces. (For each face, start at pointi, draw to pointj, draw

to point k, draw to point I and draw to point i , where i,j,k,l are

37

indices into the point array.) Because source code is available,

user subroutines can be linked into the program to retrieve

length, width, and height from the database and store the

geometry into the database• This method, as in the simple

example, represents program integration with the database•

The program DRAW is available only as an executable record,

i.e. no FORTRAN source code. It is a generic display processor

accepting as input a facet geometry description, i.e. points and

faces as described above. Because no changes can he made to the

input module of DRAW, an input file must be provided in the

format (figure 6) acceptable to program DRAW. A preprocessor

will be required to retrieve the geometry from the database and

create a correctly formatted input file. The preprocessor must

then he executed prior to execution of program DRAW. This method

represents prngram interfacing with the database.

MODEL NAME AS0
X, Y, Z ROTATIhNS IN RADIANS 3(E12.4)
NUMBER OF NODE POINTS 15
X, Y, Z COORDINATES OF FIRST NODE 3(E12.4)

• iX, Y, Z COORDINATES OF LAST NODE 3 E12.4)
NLIMBER OF FACES 15
FACE(1),FACE(2),FACE(3),FACE(4)FOR FIRST FACE 415

FACE(1),FACE(2i,FACE(3),FACE(4)FOR LAST FACE 4i5

Figure B. - Format Of Input File For The Program DRAW

5.2 Defining The Relations

Since the variables length, width, and height (input to

MAKGEO) have previously been defined in the relation DIMEN, they

do not require redefinition• Two relations require definition to

_8

contain the geometry (output from MAKGEO and input to DRAW.)

These relations are defined using the BR command and include:

(I) N(IDES - An attrihiJte relation with attributes (columns)
X, Y, and Z (all real numbers, dimensioned] and measured in
meters.) The three attributes contain the X, Y, and Z
coordinates of the points. Each row then represents a three-
dimensional point in space. The number of rows represents the
number of points in the current model.

(2) FACES - an attribute relation with one attribute
(column), FACE (an integer array dimensioned 4), containing the
indices to the node relation rows comprising a facet in the

model. Each row of the relation FACES represents a single face

composed of moving to the FACE(1) row of nodes, drawing to

FACE(2) row of nodes, drawing to FACE(3) row of nodes, drawing to

FACE(4) row of nodes, and finally, closing the facet by drawing

to FACE(l) row of nodes. Note that this relation could have been

defined having 4 integer attributes each dimensioned 1 to contain
the 4 indices to the NODES relation. The se|ected definition was

chosen to illustrate EASIE's multidimensional capability for
attribute relations.

Notice in figure 6, that the program DRAW requires as input

a model name (1st record of the input file as a character string

of length 80) and X, Y, and Z rotation angles for the model (2nd

record of the input file as three real values). A parameter

relation, MODEL, is defined to contain these two parameters.

5.3 Defining The Templates

Using the BT command, an

defined for the program MAKGEO.

input template, MAKGEOIN, is

The parameters LENGTH, WIDTH,

and HEIGHT are to be retrieved from the relation DIMEN.

During template creation, attribute relations present

several options not applicable to parameter relations. In

addition to selecting a subset of attributes, a subset of rows

may be specified by entering one or more WHERE clauses, stating

conditions required for row selection. Example: where x greater

39

than 500. Rows may be retrieved, sorted by selected attributes,

by entering a SORT clause. In this example neither of the

special capabilities is required. There are also several options

for replacing rows. For more detail on these options, reference

section 6.3.

An output template, MAKGE()OT, is defined for the program

MAKGEO. The attributes X, Y, and Z, are to be stored in the

relation NODES, using no special conditions and no sort

conditions. The rows are to be replaced such that only rows in

the current model remain in NODES. All others are deleted, using

the option, replace all tuples exclusively. All attributes,

FACE, are to he stored in the relation FACES in the same way.

An input template, DRAWIN, is defined Tfor the program

DRAW. A|I parameters are to he retrieved from tile relation

MODEL. All attributes are to be retrieved from the relations

NODES and FACES using no special conditions and no sort

conditions.

No output template is required for the program DRAW because

its output is a graphical display of the contents of MODEL,

NODES, and FACES.

5.4 Building The Database Schema

rising the RS command, an input file, called SCHEMA.OAT, to

interactive RIM is created which contains the commands to build

the schema for the relations DIMEN, NODES, FACES, and MODEL.

_0

5.5 Building The FORTRAN I/O Subroutines

Through the BF command, the input template MAKGEOIN is used

to generate the file MAKGEOIN.FOR which contains the subroutines

to retrieve length, width, and height from the relation DIMEN.

Similarly, the template MAKGEOOT is used to generate the file

MAKEGEOOT.FOR which contains the subroutines to store the model

node points into the relation NODES and the model faces into the

relation FACES. Because the attributes for N_ES and FACES will

be represented as FORTRAN arrays, dimensions are supplied for the

array declarations. These dimensions should match the dimensions

within the program. Because MAKGEO constructs a box, 8 nodes and

6 faces are required. Finally, the template DRAWIN is used to

generate the file DRAWIN.FOR which contains the subroutines to

retrieve NAME and ROTATION from the relation MODEL, the model

node points from the relation NODES, and the model faces from the

relation FACES. Because the program DRAW is capable of

displaying a model of up to 100 nodes and]00 faces, a dimension

of 100 is selected for both NODES and FACES.

5.6 Building The REVIEWER Input Flles

Prior to executing MAKGEO, va111es for LENGTH, WIDTH, and

HEIGHT must be established in the database. To provide this

capability, a REVIEWER input file is created (MAKEGEOIN.REV)

using the template MAKGEOIN.

Prior to executing DRAW, values for NAME and ROTATION should

be established in the database. This capability is provided by

creating a REVIEWER input file using the template DRAWIN. Recall

41

that in additinn to MODEL, the relations NODESand FACES are also

accessed by the template DRAWIN. Assuming a decision is made

that geometry modification should ()nly he a11owed through

modifications to LENGTH, WIDTH, and HEIGHT and re-execution of

MAKGEO, a row modification flag in the template input file is set

to 2 (no row modification) for both NODES and FACES. Nther flag

values would allow modification to the geometry using the

REVIEWER. An alternative would have been to create a template

which only accessed the relation MODEL. However, using the

selected method, a user may review the geometry as NAME and

ROTATION are modified.

5.7 Preparing The Programs

Use of the SYSTEM LIBRARY PROCESSOR is complete. The

remaining tasks to complete the integration are:

(I) Read the SCHEMA.DAT input command file into interactive
RIM to create the database.

(2) Include common blocks in MAKGEOIN.FOR and MAKGEOOT.FOR

to communicate data to/from the program MAKGEO.

(3) Modify MAKGEO to call the subroutines GETDATA and

PUTDATA in the appropriate places.

(4) Link MAKGEO object file with objects of MAKGEOIN,

MAKGEOOT and RIM library.

Include FORTRAN code in the DRAWIN.FOR source file to

create an input file that is used by program DRAW.

This input file contains data retrieved from the
database.

(6) Link DRAWIN object file and RIM library as a stand-

alone program to he executed as a preprocessor to DRAW.

The schema for the database may be established by the

command:

42

$RUNRIM

followed by the RIM command:

INPUT SCHEMA.

Within the FORTRAN source code for the program MAKGEN,

(MAKGEO.FOR, Appendix B) are the common blocks:

COMMON/INDIMEN/LENGTH,WIDTH,HEIGHT

COMMON/OUTGEO/X(8),Y(8),Z(8),NG,FACE(4,6),NF.

A file named MAKGEOIN.COMMNNmust be created containing the

common block INDIMEN. A file named MAKEGEOOT.CNMMONmust be

created containing:

COMMON/OUTGEO/X,Y,Z,NOO2w,FACE,NON3_.

Notice that dimensions for X, Y, Z, and FACE have been

eliminated because they are contained in separate declarations

within MAKGEOOT.FOR.

Also, notice in the call to SUBROUTINEWIO02 (passing the

parameters to be stored in relation NODES) are the parameters X,

Y, and Z which are arrays containing the node points and the

integer parameter NO02 that must contain the number of node rows

to be stored in the database. NO02 has then replaced NG in the

common block OLJTGEO.Similarly, in the call to SUBROUTINEWIO03 ,

is the integer parameter NO03 which must contain the number of

face rows to be stored in the database. NO03 has then replaced

NF in the common block OUTGEO.

Since no variable reassignments are necessary, the code

line:

INCLUDE 'MAKGEOIN.ASSlGN/LIST'

is eliminated (by commenting) from the file MAKGEOIN.FOR.

the code line:

Also

43

INCLUDE 'MAKGEOOT.ASSIGN/LIST'

is eliminated (by commenting) from the file MAKGEOOT.FnR. A

recommended alternative approach is to create empty files using

the names MAKGEOIN.ASSIGN and MAKGEOOT.ASSIGN thus preventing the

need for the modifications to the files MAKGEOIN.FOR and

MAKGEOOT.FOR.

A call to SUBROUTINE GETDATA (in file MAKGEOIN.FOR) is

added to the beginning of the program MAKGEO, and a call to

SUBROUTINE PUTDATA is added to the end of the program MAKGEO.

MAKGEO.FOR, MAKGEOIN.FOR, and MAKGEOOT.FOR are compiled and

linked using the file MAKGEO.COM.

Execution of MAKGEO will now retrieve LENGTH, WIDTH, and

HEIGHT from the database (call to GETDATA_) passing these values

via COMMON/INDIMEN/ to the main program which will fill the

arrays X, Y, Z, and FACE, and the parameters NG and NF with the

geometry for the specified box. The main program will pass the

values via COMMON/OUTGEO/ to SURROUTINE PUTDATA which will

store the geometry into the relations NODES and FACES. Recall

that this method represents program integration with the

database.

Because the program DRAW is available as an executable file

only, it cannot be modified. The file DRAWIN.FOR must be

modified to become a stand-alone program that will retrieve the

model name, rotations, and geometry from the database and format

the data in a fi|e as input to DRAW.

The St_BROUTINE, RETIJRN, and COMMON INCLUDE statements are

commented.

44

The file DRAWIN.ASSIGN is created, amd contains the

statements to write the model name, rotations, and geometry (in

the required format) for the file DRAW.DAT, as input to the

program DRAW.

Notice that the program DRAW requires rotations to be input

in radians, but in this example, rotations are stored in the

database as degrees and converted to radians prior to writing the

DRAW.PAT file. DRAWIN.FOR is compilied and linked using the file

DRAWIN.COM.

Execution of DRAWIN will now retrieve model name, rotations,

and geometry from the database and create an input file DRAW.DAT

to be used as input to the program DRAW. Recall that this method

represents program interfacing with the database.

5.8 Execution Of The Complex Example

The VMS command: $REVIEW MAKGEOIN

produces the display shown in Appendix C.

The REVIEWER commands:

M LENGTH I
M WInTH 2
M HEIGHT 3
E

to establish LENGTH, WIDTH, and HEIGHT of the hox as I, 2, and 3

meters, respectively.

The VMS cofnmand: $RUN MAKGEO

executes MAKGEO and creates the box geometry.

The VMS command: $REVIEW DRAWIN

produces the display shown in Appendix D.

45

The REVIEWER commands:

M 1 _TEST BOX'

M 2 20

M 3 30

M 4 40

E

establishes the model name 'TEST BOX' and X, Y, and Z rotations

of 20, 30, and 40 degrees, respectively.

The VMS command: $RUN DRAWIN

executes DRAWIN and creates the input file for the program DRAW.

The VMS command: $RUN DRAW

produces the display, shown in figure 7, only on a TEKTRONIX 4014

or compatible terminal. Source for the program DRAW is available

on the file

TOAIDE:[EXAMPLE.SOURCE]DRAW.FOR

and may be modified to use another graphics system.

_m

Figure 7. - Display From Program DRAW

46

6.0 SYSTEM LIBRARY PROCESSOR REFERENCE GUIDE

Sections 4 and 5 introduce commands of the SYSTEM LIBRARY

PROCESSOR used for specific examples. The purpose of this

section is to describe each command detailing all options and any

restrictions. These command descriptions are application-

independent as the intention is to provide a reference guide for

all possible uses of the command.

All commands are described as they apply to ATTRIBUTE

relations (section 3.1). Unless specifically stated otherwise,

for any descriptions or prompts, the word attribute may be

replaced by the word parameter to render the command description

useful for PARAMETER relations.

All prompts appear as presented by the SYSTEM LIBRARY

PROCESSOR with the exception of words enclosed by percent signs

(% %). Such words represent words or phrases that depend upon

the particular application and previous, user responses. At1

user responses are underlined and followed by a carriage return

character (<CR>).

Refore executing the SYSTEM LIBRARY PROCESSOR, the SYSTEM

LIBRARY Database must reside in the current directory. To create

the SYSTEM LIBRARY database and execute the SYSTEM LIBRARY

PROCESSOR, see Section 4.1.

The initial prompt:

ENTER NUMBER OF CHARACTER/WORD FOR TARGET SYSTEM:
4 FOR RIM ON PRIME/VAX

10 FOR RIM ON NOS

2 FOR SDRC/PRL
%NUMBER OF CHARACTERS PER WORD%<CR>

47

establishes a conversion factor used hy the "BRV" and "BF"

commands to retrieve/store character data from/to the database.

The proper response depends upon the host computer system and/or

the database management system used in execution of the REVIEWER

and database read/write subroutines (generated by the FORMATTER).

The SYSTEM LIBRARY command menu follows:

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION

BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO RIIILD A SCHEMA DUMP FOR DATA BASE

BRV - TO BUILD A REVIEWER INPUT FILE

BP - TO BUILD PROGRAM NESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

6.1 BR - To Build Relations

The first step in constructing the SYSTEM LIBRARY is to

define the relations. The "BR" command can be used at any time

to add a relation to the SYSTEM LIBRARY.

BR <CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
%RELATION NAME%<CR>

Relation names are I to 8 alphanumeric characters and must be

unique.

ENTER I FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

%OPTINN%<CR>

A relation must be defined as PARAMETER or ATTRIBUTE type.

ENTER RELATION DESCRIPTION (8_ CHARACTERS):
%RELATION DESCRIPTION%<CR>

48

The description is presented by the REVIEWER.relation

ENTER YOUR NAME (20 CHARACTERS):

%INTEGRATOR'S NAME%<CR>

This entry exists only to record the name of the program

integrator responsible for creating this relation. Following the

prompt:

DEFINE THE RELATION %RELATION NAME%:

loop begins to define each PARAMETER/ATTRIBUTE. The same

information is required for both.

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>

%ATTRIBUTE NAME%<CR>

Names are I to 8 characters and may not end with the

underscore () character. These names are also used as FORTRAN

variable names in the FORMATTER, database read/write routines.

ENTER ATTRIBUTE TYPE>

%I,R,OR C%<CR>

PARAMETER/ATTRIBUTES may be typed integer (1), real (R), or

character (C). If character type is selected,

ENTER NUMBER OF CHARACTERS IN STRING>

%STRING LENGTH%<CR>

the number of characters is solicited.

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>

%UP TO 3 DIMENSI_NS%<CR>

PARAMETERS/ATTRIbUTES may be 1-, 2-, or 3-dimensional. A <CR>

indicates a default single dimension of size one. For example,

to dimension an attribute that is 2 x 3 x 6 enter:

2,3,6<CR>

The fol|owing report

DIMENSION = 2 X 3 X 6

indicates the selected dimension.

49

ENTER ATTRIBUTE DESCRIPTION>
%ATTRIBUTE DESCRIPTION%<CR>

ENTER UNIT OF MEASURIEMENT (<CR> IF N/A)>
%UN I T%<CR>

Descriptions are limited to Hf} characters, llnits are a maximum

of 16 characters. Both are presented by the REVIEWER.

ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

The intention of including an output format is to control output

of the PARAMETER/ATTRIBUTE by the REVIEWER. However, this input

is not currently recognized by the REVIEWER, and a <CR> response

is sufficient.

If all inputs are correct, an affirmative response to:

OK TO ENTER THE ATTRIBUTE %ATTRIBUTE NAME% INTO THE DATA
BASE (Y/N) (<CR>=Y):
%Y OR N%<CR>

enters the PARAMETER/ATTRIBUTE into the SYSTEM LIBRARY

PROCESSOR. A negative response disregards these entries.

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)
<CR>

This completes the loop for defining a PARAMETER/

ATTRIBUTE. The loop continues to define subsequent PARAMETERS/

ATTRIBUTES until a <CR> is entered for:

ENTER RELATI(IN NAME (OR <CR> WHEN DONE)>
<CR>

6.2 AR - To Add To An Existing Relation

PARAMETERS/ATTRIBUTES are added to an existing relation by

this command. A]| prompts and responses are the same as the "BR"

command. PARAMETERS/ATTRIBUTES are added to the end of the

defined relation. As a warning, note that templates that access

all PARAMETERS/ATTRIBUTES for an expanded relation (0 option in

50

the BT command described in Section 6.3) will access these new

PARAMETERS/ATTRIBUTESin subsequent executions of the BRV and BF

commands.

6.3

specify input/output

appl icati on.

BT<CR>

BT - To Build A Template

After relations are defined templates

from/to the database

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
%TEMPLATE NAME%<CR>

are designed to

for a given

Template names are I to 8 characters in length and must be

unique.

ENTER I IF INPUT TEMPLATE

OR 2 IF OUTPUT TEMPLATE

%OPTION%<CR>

Input templates describe data to be retrieved from the

database. Output templates describe data to be stored into the

database. This option deterraines the type of subroutine produced

by the BF command (GETDATA or PUTDATA described in Section

6.4).

Following the prompt:

IDENTIFY ALL %INPUT OR OUTPUT% RELATIONS FOR THE TEMPLATE

loop begins to describe how the template accesses a relation.

ENTER RELATION NAME (OR <CR> WHEN nONE):
%RELATISN NAME%<CR>
ENTER I FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

%OPTION%<CR>

The relation name and type are entered. If the relation does not

exist, the BR command is entered automatically to define a new

relation. If the relation exists, an option allows review of the

relation schema:

51

THE RELATION %RELATIONNAME%IS ALREADYDEFINED AND HAS
%NUMBEROF ATTRIBUTES%ATTRIBUTES.
DO YOU WANTTO SEE THEM (Y/N) (<CR>=N):
%Y OR N%<CR>

An affirmative response displays the relation schema similar to

the following sample.

ATTRIBUTE NAME DIMI DIM2 DIM3 TYPE NUMBER OF CHARACTERS

AI 2 3 6 CHAR 20

A2 INT

A3 I0 REAL

A negative response results in no such display.

J

ENTER 0 IF ALL ATTRIBUTES ARE TO BE REPLACED

OR I TO READ ATTRIBUTES TO BE REPLACED FROM A FILE

OR 2 TO ENTER ATTRIBIJTES TO BE REPLACED FROM TERMINAL

%OPTION%<CR>

All or some of the PARAMETERS/ATTRIBUTES of a relation may

be accessed. A "0" response indicates all PARAMETERS/ATTRIBUTES

are to be accessed. A "i" response results in a query for a file

(one name pername containing the desired list of names

record). A "2" response results in the prompt:

ENTER ATTRIBIITE NAMES EACH FOLLNWED _Y <CRY:
%ATTRIBUTE NAME%<CR> WHEN DONE

Names are then entered one per line. If a name is entered that

does not exist in the relation, it is ignored and the prompt:

THE ATTRIBUTE NAME %ATTRIBUTE NAME% IS NOT DEFINED FOR
THIS RELATION.
TRY AGAIN:

allows input to continue with a warning. Again the option:

THE RELATION %RELATION NAME% IS ALREADY DEFINED AND HAS
%NUMBER OF ATTRIBUTES% ATTIRBUTES.
DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):

appears to provide review of the relation schema.

the option taken, the prompt:

NEXT ATTRIBUTE:

indicates that name input is to continue.

Regardless of

52

After all desired na_es are entered, a <CR> ends the naming

process and results in the report:

YOU HAVE IDENTIFIED %NUMBEROF ATTRIBUTES%ATTRIBUTES TO
BE RETRIEVED

For ATTRIBUTE type relations only, rows may be retrieved/replaced

under conditional clauses and sorted by one or more attributes.

ENTER NUMBEROF CONDITIONS IN THE "WHERE" CLAUSE
OR 0 FOR NO CONDITIONS

%NUMBER OF WHERE CONDITIONS%<CR>

Entering an integer greater than "0" will require

specification of WHERE clauses:

FOR CONDITION %CONDITION NUMBER% ENTER:
ATTRIBUTE NAME>
%ATTRIBUTE NAME%<CR>
LOGICAL OPERATOR>
%LOGICAL OPERATOR%<CR>
_ALUE(%AI_TRIBUTE TYPE%)>
%VALUE%<CR>

the

Attribute names must be defined for the relation. Logical

operators are EQ, NE, LT, GT, LE, OR GE. Values must be of the

same type as the attribute named.

If more than one WHERE condition is specified, the above

sequence is repeated for each condition, and repetitions are

separated by the query:

BOOLEAN OPERATOR FOR CONDITIONS %PREVIOUS CONDITION% AND

%NEXT CONDITION%>

%BOOLEAN OPERATOR%<CR>.

Legal choices for the boolean operator are AND or OR.

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR 0 FOR NO CONDITIONS

%NUMBER OF SORT CONDITIONS%<CR>

Entering an integer greater than "0" requires the specification

of sort conditions. For each sort condition, an attribute name:

53

FOR CONDITION %CONDITION NUMBER% ENTER:
ATTRIBUTE NAME>
%ATTRIBUTE NAME%<CR>]

and sort type:

I FOR ASCENDING SORT OR
2 FOR DESCENDING SORT
%OPTION%<CR>

are entered. Sorting is performed by the specified sort order on

the Ist attribute followed by the 2nd, 3rd...nth sort attribute.

For ATTRIBUTE relations referenced in output templates only,

a replacement code is required:

ENTER REPLACEMENT CODE:
1 - ADD ALL TUPLES AT ONCE
2 - REPLACE ALL TUPLES AT ONCE
3 - REPLACE ALL TUPLES EXCLUSIVELY AT ONCE
4 - ADD TUPLES ONE AT A TIME
5 - REPLACE TUPLES ONE AT A TIME
6 - REPLACE TUPLES EXCLUSIVELY ONE AT A TIME
%REPLACEMENT CODE NUMBER%<CR>

This replacement code affects only the BF command and the

rows are replaced

definitions.

in a relation as determined by following

i - Rows are passed through the PUTDATA subroutine as
arrays and are added to the end of the c_rrent relation.

2 - Rows are passed through the PUTDATA subroutine as

arrays and replace the rows in the r--elation if they
exist. If more rows are to be added than currently
exists, new rows are added to the end of the current
relation.

3 - The same as 2 except if the number of rows to be
replaced is less than the number of rows in the current
relation, the extra existing rows are deleted.

4, 5, and 6 - the same as I, 2, and 3 respectively, except
rows are passed in one at a time. Each call to a
FORMATTER subroutine replaces one row.

OK TO ENTER THE RELATION %RELATION NAME% INTO THE
TEMPLATE

%RELATION NAME% (Y/N) (<CR>=Y):
%Y OR N%<CR>

54

An affirmative response stores the relation into the template

within the SYSTEM LIBRARY. If mistakes have been made in the

relation specification, a negative response disregards all

information for this relation from the template.

Here the loop for describing access to a relation ends with:

ENTER RELATION NAME (OR <CR> WHENDONE):

At this point, another relation may be optionally specified for

the template. When all relations are specified, a <CR>

terminates the template deflnition.

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):

Another template may be defined by entering a new template

name. A <CR> terminates the BT command.

6.4 BF - To Build FORMATTER Routines

The term FORMATTER refers to conversion between database

format and program internal format (program variables). An input

FORMATTER routine (default name GETDATA__) retrieves data from the

database to store in program variables. An output FORMATTER

routine (default name PUTDATA___) retrieves data from program

variables to store in the database. The information obtained

from the input and output templates determines the content and

structure of the

spectively.

BF<CR>

ENTER TEMPLATE NAME

OR <CR> FOR ALL RELATIONS

OR "Q" TO QUIT
%TEMPLATE NAME%<CR>
ENTER I IF INPUT TEMPLATE

OR 2 IF OUTPUT TEMPLATE

%OPTION%<CR>

FORMATTER GETDATA and PUTDATA routines, re-

55

ENTER %GETDATA OR PUTDATA% FILE NAME
OR "Q" TO RETURN WITHOUT WRITING A FILE
%FILE NAME%<CR>

The form of the file name prompt depends upon whether the

template is of type input or output. The file name entered may

he any legal file name, including the complete directory path if

needed. If the file exists, options are provided to overwrite

the file or enter a new name.

Examples:BOXIN.FOR
TOAIDE:[EXAMPLE.SOURCE]BOXIN.FOR

In most database systems, attribute names must be unique

within a re|ation but can be duplicated in other relations. As

the attribute names are used as FORTRAN variables in the

FORMATTER routines, they must be unique for a selected

template. For each set of duplicate attribute names within the

template, the following prompts appear al]owing new unique names

to be entered:

THE FOLLOWING RELATIONS CONTAIN DUPLICATE
ATTRIBUTE/PARAMETER NAMES:
NUMBER RELATION NAME

I %RELA, TION NAME% %ATTRIBUTE NAME%

2 %RELATION NAME% %ATTRIBUTE NAME%

ENTER A UNIOUE FORTRAN VARIABLE NAME FOR EACH
OF THE ABOVE DUPLICATES (8 CHARACTERS MAXIMUM):

i %RELATION NAME% %ATTRIBUTE NAME%
%NEW NAME%<CR>

2 %RELATION NAME% %ATTRIBUTE NAME%
%NEW NAME%<CR>

OK TO ENTERINEW NAMES IN THE TEMPLATE? (Y/N)
%Y OR N%<CR>

56

Attribute names may be up to 8 characters in length. As the

character length for ANSI standard variables is only 6

characters, an option is available to rename any attribute names

of greater than 6 characters.

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
%Y OR N%<CR>

A negative response maintains existing attribute names. An

affirmative response results in the following prompts allowing

each attribute name greater than 6 characters to be renamed.

THE FOLLOWING NAMES ARE GREATER THAN 6 CHARACTERS

AND CANNOT REPRESENT AN ANSI STANDARD VARIABLE NAME

ENTER A NEW NAME (6 CHARACTER MAXIMUM):
NUMBER RELATION NAME

i %RELATION NAME% %ATTRIBUTE NAME%

%NEW NAME%<CR>

Variable names within programs may not match attribute names.

Although the recommended approach is to maintain consistency

between attribute names and FORMATTER variable names wherever

possible, the variable names can be changed to match the program

internal names.

r)O YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES?
(Y /N) (<CR >=N)
%Y OR N%<CR>

A negative response maintains existing attribute names. An

affirmative response results in the following prompts allowing

attributes to he renamed as FORMATTER variables.

ENTER CURRENT NAME OF PARAMETER/ATTRIRUTE TO CHANGE

OR "Q" TO QUIT

%ATTR IBUTE NAME%<CR>

%NEW _iAME%<CR >

ENI'ER CURRENT NAME OF PARAMETER/ATTRIBUTE TO CHANGE

OR "Q" TO QUIT

Q<CR>

57

Attribute names within the database relations are never

changed during any renaming process. Comments in the FORMATTER

routine code link attribute names with the new Fi)RTRAN variable

names. Subsequent executions of the BF cemmand for the same

template uses these same new names without repeating the renaming

process.

The number of rows in a relation is virtually unlimited.

However, as attributes are stored in the FORMATTER routines as

arrays, a dimension must be supplied for each attribute relation

only (does not apply to parameters).

ENTER MAXIMUM NUMBER OF TUPLES TO BE REPLACED FOR
RELATION %RELATION%
%PROGRAM'S DIMENSION%<CR>

This information is not stored and must be reentered with

each execution of the "BF" command for a given template.

6.5 BS - To Build A Schema Dump For Database

Through the BR and AR commands, descriptions of the database

schema are defined and stered in the SYSTEM LIBRARY. Execution

of the BS command produces a file containing the database schema

formatted for use in constructing the database.

BS<CR>
-_-N-TTETI FOR RIM SCHEMA

OR 2 FOR SDRC/PRL SCHEMA
%OPTION%<CR>

Option "I" produces a RIM command input file which must be read

by interactive RIM (the INPUT command) to create the database

schema. Option "2" produces FORTRAN code which must be compiled

and linked with a special RIM to PEARL conversion library and the

PEARL FORTRAN library to produce the database schema.

58

ENTER SCHEMADUMPFILE NAME
OR "Q" TO RETURNWITHOUTWRITING A FILE
%FILE NAME%<CR>

Regardless of the selected option, information must be written to

a file, thus a file name must be supplied. If option "i" was

selected, the name must be no more than 6 characters with an

extension of .DAT. If option "2" was selected, the filename

should have the extension .FOR. Directory location can precede

the name.

Examples:

Option I: SCHEMA.DAT

TOAIDE :[E XAMPLE. CFG. DEFAULT]SCHEMA. DAT

Option 2: PRLSCH.FOR
TOA IDE :[E XAMPLE. CFG. DEFAULT]PR LSCH. FOR

If the file exists, options are provided to overwrite the file or

enter a new name.

ENTER RELATION NAME FOR SCHEMA DUMP

OR <CR> FOR COMPI.ETE DATABASE SCHEMA DUMP

OR "Q" TO QUIT

<CR>

The schema for a single relation is dumped by entering a pre-

defined relation name. The recommended approach is to dump the

complete schema and create the complete database via one file.

6.6 BRV - To Build A REVIEWER Input File

The R_VIEWER is a generic program for database review and

modification (Section 7.0). Although data are presented in two

standard f_rmats (parameter and attrihute), choice of data

subsets for review is specified thro_gh the template. The

REVIEWER input file represents the means of transferring the

59

template information from the SYSTEM LIBRARY to the REVIEWER.

RRV<CR>
ENTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES
OR <CR> TO CREATE A LOCAL REVIEWER FILE
%DIRECTORY LOCATION%<CR>

When using the recommended EASIE directory structure [3] the

REVIEWER input file is transferred to the proper location by

entering:

T_AIDE:[%SYSTEMID%.PROG]

If not, a <CR> nroduces a local file. In either case, the name

of the file is:

%TEMPLATE NAME%.REV

ENTER TEMPLATE NAME
OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES
OR "O" TO OUIT

%TEMPLATE NAME%<C>.

REVIEWER input files may be constructed for a single template by

entering the template name or for a]] defined templates by

entering a <CR>.

ROW MODIFICATION FLAG FOR RELATION RELATION OF TEMPLATE
RELATION:
0 - FULL MODIFICATION
i - MODIFY BUT CANNOT ADD ROWS
2 - CANNOT MODIFY ROWS
%OPTION%<CR>

REVIEWER input files contain flags for modifying attribute type

data only that instruct the REVIEWER to modify as follows:

0 - Allow modification of any attributes in any row

including adding or deleting rows.
I - Allow modification nf any attrihutes in any row

but do not allow rows to be added or deleted.
2 - Allow only data review; no modification.

While the flags are written, this capability is not implemented

in the current REVIEWER. Regardless of the selected option, the

REVIEWER acts as if the flag equals "0". These flags are not

60

saved in the SYSTEM LIBRARY and must be reentered with each

execution of BRV.

6.7 - BP - To Build Program Description

The BP command is not required for integration/interfacing

of programs into a database system. However, if the completed

application program is to be recognized and executed by the EASIE

executive [4], this command must he executed for every

application.

More than one FORTRAN or DCL program may be identified and

executed as a single EASIE application. For this command, an

application is referenced as a procedure and a program as a

module. A procedure then censists of one or more modifies to be

executed sequentually. This is not to be confused with the EASIE

procedure [4] which consists of one or more EASIE commands.

BP<CR>

ENTER NUMBER OF MODULES TO EXECUTE FOR THIS PROCEDURE >
%NUMBER OF MODIII ES%<CR>

For example, if a single prograf_ is to be executed as an EASIE

application and is integrated with the database, the response is

' 1"

to

processor to read an output

database, the r_)sponse is "3".

ENTER PROCEDURE NAME >

%PROCEDURE NAME%<CR>

The procedure name is the name used for all EASIE application

commands.

If the same program is interfaced, producing a preprocessor

read the database and fornat an input file, and a post

file and store data into the

61

Following this entry, a loop begins presenting a sequence of

prompts/responses to describe each module of the procedure:

FOR MODULE # 1 ENTER :
NAME >

%MODULE NAME%<CR>

The module name is the file name of the FORTRAN executable file

or the DCL command procedure for this module.

LOCATION (FULL DIRECTORY STRUCTURE OR

<CR> IF SAME AS LAST MODULE) >
%1_IRECTORY LOCATION%<CR>

The module may be located anywhere on the disk system.

Example: TOA ICIE:[%SYSTEMID%. PROG]

DUAO: [TESTPROG]

<CR> (If the progra_Q is in the current directory.)

Names should include the complete directory path including

logical disk name.

ENTER I FOR FORTRAN PROGRAM

OR 2 FOR COMMAND LANGUAGE PROCEDURE >
%DPT ION% <CR >

The module may be either a FORTRAN program or a DCL command

procedure.

ENTER INPUT TEMPLATE NAME >

%INPUT TEMPLATE NAME%<CR>
ENTER O_JTPUT TEMPLATE NAME >

%OUTPUT TEMPLATE NAME%<CR>

Input and output template names are entered if they exist. If

not applicable, a <CR> is entered.

IS A CONFIGURATION REQUIRED? (Y/N <CR> -- Y) >
%Y OR N%<CR>

If the module interacts with a database or requires any type of

input/output other than from/to the interactive terminal , the

response is Y or <CR>. Otherwise the response is N.

62

ENTER NAME OF RESPONSIBLE PERSON OR

<CR> IF SAME AS LAST MODULE >

%INTEGRATOR'S NAME%<CR>

This entry exists only to record

integrator.

This completes the loop of module description. The loop is

repeated for each module fn the procedure. Following the last

module description is the prompt:

OK TO ENTER PROCEDURE INTO PROGRAM DICTNRY? (Y/N <CR>=Y)
%Y OR N%<CR>

If all entries are correct, the response is Y. If not, the

response is N and all module descriptions for the procedure are

discarded.

OK FOR NEW PROCEDURE? (Y/N <CR>=Y) >
%Y OR N%<CR>

After the procedure is completely described, the opportunity

to describe another procedure is presented. An affirmative

response repeats the procedure description process. A negative

response ends the procedure description process.

The procedure descriptions are stored in the SYSTEM

LIBRARY. For this information to be available to the EASIE

executive, a file, PROGRAM.PGD must be written to the PROGUFD

area. (See WORKSPACE, EASIE Volume Ill.)

OK TO OUTPUT PROGRAM DATA TO .PROG AREA? (Y/N <CR>=Y) >
%Y OR N%<CR>

A negative response will end the BP command. An affirmative

response will result in the prompt:

ENTER DIRECTORY LOCATION FOR PROGRAM DESCRIPTION FILES

OR <CR> TO CREATE A LOCAL PROGRAM DESCRIPTION FILE

%DIRECTORY LOCATION%<CR>

the name of the program

63

This entry must be the name of the PROGUFD directory used in the

system workspace.

6.B PT - To Print A Template

The PT command may be used at any time to print a template.

6.9 LR - To List Relations

The LR command may be

relations.

used at any time to list al I

6.10 PR - To Print A Re|ation

The PR command may be used at any time to print a relation.

64

l.O REVIEWER REFERENCE GUIDE

The REVIEWER is a generic program for reading, displaying,

modifying, and retrieving/storing selected data from/into a

database. The selection Of data is accomplished via the REVIEWER

input file created by the BRV command. The REVIEWER is designed

to be executed from within the EASIE executive [4] but may be

executed independently. To execute the REVIEWER standalone, the

database must be in the current directory. A file named

AIDE%terminal name%.TRM is created in the directory above the

current directory and may be deleted after execution of the

REVIEWER.

Data are presented by the REVIEWER in categories. A

category is a subset of a relation. A subset can be anyone of

three options specified in the template. These options are:

(I) some or all parameters; (2) some or all attributes; and (3)

some or all rows for attribute relations. Figure 8 is an example

of category display for parameter relations. Figure 9 is an

example of category display for attribute relations.

Notice that for parameter relations, values, names,

subscripts, descriptions, and units are available with each

display. Character values, descriptions, and units may be

truncated. For attribute relations, only values are directly

displayed. Character values may he truncated. Complete values,

names, stlhscripts, descriptions, units, and data types are

available with the expand (X) command.

A command menu follows the data display for the current

category. Once this menu is mastered, it is helpful to toggle (T

command) the menu off allowing a larger data display on the

65

terminal screen. The REVIEWER commands are described in the

following subsections. The commands are similar for parameter

and attribute relations. Each command is described with

differences pertaining to the relation type being identified as

required.

l.] MODIFY Command, M

Parameter use:

M n : modify value (n = line#,name(subscript),or line range)

Attrih,Jte use:

M r c :modify value (r = row# or range;
c : column#,name(suhscript), or range)

The MODIFY command alters category data locally to the

REVIEWER. The altered data may he optionally replaced in the

database when changing categories or exiting the REVIEWER.

Parameters are identified by names or line numbers. A line is a

parameter or an element of a multi-dimensional parameter.

Elements of attribute categories must be identified by both row

number and either name or column (attribute) number. After

entering a MODIFY command (including <CR>) the following prompt

appears.

ENTER NEW VALUE:

The new value is then entered. Alternatively, the new value can

be appended to the MODIFY command. Using this method, text

strings with embedded blank characters must be enclosed in single

quotes (').

Examples:

Modify the parameter, NAME, to NEW NAME where I is the line

number of NAME:

66

M I<CR>
ENTER I_EW VALUE:
NEW NAME<CR>

M I 'NEW NAME'<CR>

Modify the parameter NAME to NEWNAME:

M NAME<CR>
ENTER NEW VALUE:
NEWNAME <CR >

M NAME NEWNAME<CR>

Modify row 2 column 3 to i0:

M 2 3<CR>
ENTER NEW VALUE:
IO<CR>

M 2 3 I0 <C,R>

Modify row 2 column name FACE(3) to I0:

M 2 FACE(3}<CR>
ENTER NEW VALUE:
IO<CR>

M 2 FACE (3) IO<CR>

Line, row, or column numbers may be replaced by a range

specification to modify more than one element with a single

command. In a range specification, arguments are delimited by a

comma(,). Arguments separated by a colon(:) indicate all numbers

in the range (inclusively) are to be included.

Examples :

Modify parameter line numbers 3,9,5,6, and 7:

M 3,9,5:7<CR>

Modify rows 8,2,3,4,5, and i, and columns 8,9,10,11, and 12:

M 8,2,3:5,1 8:12<CR>

67

7.2 CHANGE CATEGORY Command, C

C n : change category (n = id or name)

When the REVIEWER is executed, the initia] display is of the

first category specified in the template. The display is changed

to a different category by the CHANGE CATEGORY command. The new

category is specified by the category numher or name. The name

is the relation name in the template. The number is the order of

the relation in the template. Numbers and names can be displayed

with the LIST CATEGORIES (CAT) command.

Examples:

Change to category 7

C 7<CR>

thange to category FACES

C FACES<CR>

If data have been modified in the current category, an option is

present to replace the data in the database:

OK TO REPLACE CHANGES? (Y) >

An affirmative response or <CR> replaces the data. A

negative response discards all modifications for this category.

7.3 NEXT PAGE Command, N

N n : next page (n = ÷ or - pages)

A fixed number of lines (default of 20) are displayed on the

terminal screen (page). If the number of lines (or rows) in the

current category exceeds this fixed number, subsequent rows are

displayed via the NEXT PAGE command. The parameter represents a

page number relative to the current page.

68

Examples:

Lines 1:20 are initially displayed.

N i <CR>

Displays lines 21:40.

N 3<CR>

Displays lines 81:100.

N -2<CR>

Displays lines 41:60.

1.4 REPRINT PAGE Command, R

R : reprint page

The REPRINT PAGE command redisplays the current page of data

reflecting data modifications, The display reflects

modifications, but these are not stored in the database until the

category is changed or the REVIEWER is exited.

7.5 LINES PER PAGE Command, L

L n :n line#'s per page

The default number of parameter lines or attribute rows is 20.

This value is changed with the LINES PER PAGE command.

Example:

Display 10 lines per page.

L IO<CR>

/.6 EXPAND DISPLAY LENGTH Command, X

Parameter use:

X n : expand line# n

69

Attribute use:

X r c : expand row# n, column# c

Because of screen size limitations, some information is not

available from the REVIEWER page display. For parameters,

character values exceeding 16 characters, descriptions exceeding

16 characters, and units exceeding I0 characters are truncated.

For attribute data, character values exceeding 16 characters are

truncated. Descriptions and units are not displayed. This

information along with parameter/attribute types, character

length when character type, and dimensions, is available through

the EXPAND DISPLAY LENGTH command.

Parameter Example:

Expand parameter line number I:

X I<CR>

results in the output:

NAME I TYPE ! CHARS J
NAME ! CHAR _ 80 !
DESCRIPTION:
MODEL NAME
VALUE:
TEST OF MAKGEO FOR FIGURE 8

Attribute Example:

Expand row 3 column 2:

X 3 2<CR>

results in the output:

NAME _ TYPE ! CHARS l

FACE i INT l i
DESCRIPTION:
FACE CONNECTIVITY (NODE I
TQ i)
VALUE:

5

Names may be used in place of 1

SUBSCRIPT ! IINIT
f

SUBSCRIPT ! UNIT

2 I

0 2 TO 3 TO 4 (OR TO I IF 4=0)

ne or column numbers.

7_

7.7 SET COLUMNS Command, S

S : set columns to be displayed

The SET COLUMNS command pertains only to attribute categories.

This command may be used in either of two modes, If an integer

parameter follows the S (separated by a space) the display is

shifted that number of columns. Positive integers shift to the

right and negative integers shift to the left.

Example:

If the first six columns are displayed:

S 6<CR>

displays columns 7:12. Any positive integer greater than the

number of remaining columns to the right results in a display of

the last 6 columns. Any negative integer less than the number of

remaining columns to the left results in a display of the first 6

col umns.

If no integer follows the "S", the option:

DESIGNATE THE C(ILUMNS OF INTEREST
"*" INDICATES ALL COLUMNS
.... IS IIELIMITER BETWEEN CrILUMNS

9

'.... INDICATES A RANGE OF COLUMNS
<CR> nESCRInES NO C(ILUMNS

provides a review nf the attributes in the current category. An

asterisk(*) indicates all attributes are to be reviewed while

commas and colons are used to express a range of attributes.

(Section 7.1 provides an explanation of range.) A <CR> bypasses

the attribute review.

Sample output from the attribute review follows:

cnl. i NAME ! TYPE ! CHAR ! I)IMENSION ' LINIT DESCRIPTION
I ! X ! REAL i 0 1 i M X COORDINATE
2 ! Y i REAL i _ I l M Y COORDINATE
3 ! Z i REAL i 0 ! i M Z COORDINATE

71

Following the attribute review, the option

DESIGNATETHE COLUMNSTO DISPLAY
<CR> INnlCATES ALL COLUMNS
"," IS DELIMITER BETWEEN COLHMNS
"'" INDICATES A RANGE OF COLUMNS

provides a selection of columns for display. A range of columns

is specified. AI ternati vely, a <CR> di spl ays the first 6

col umns.

1.8 END COMMAND, E

E : end and save mods

The END command replaces any modifications for the

category only and terminates execution of the REVIEWER.

current

7.9 QUIT Command, Q

0 : quit without saving mods

The QUIT command terminates the REVIEWER discarding

modifications made to the current category.

any

/.I0 HELP command, H

H : help

The HELP command is not implemented at the present time.

7.II LIST CATAGORIES Command, CAT

CAT : list categories

The LIST CATEGORIES command provides a map of category

identification numbers (order of relations in th_ template) and

category names for the current template to be used with the

CHANGE CATEGORY (C) command.

7_

Exampl e :

CAT<CR>

DESIGNATE THE CATEGORIES OF INTEREST

"*" INDICATES ALl CATEGORIES

"," IS DELIMITER BETWEEN CATEGORIES
....' INDICATES A RANGE OF CATEGORIES

*<CR>

ID CATEGORY

I MODEL

2 NODES

3 FACES

CATEGORY DESCRIPTI()N

MODEL INFORMATION
NODE POINT COORDINATES

CONNECTIVITY OF NODES TO FORM FACES

7.12 DEFINE REVIEW SUBSET Command, SUB

SUF_ : define review subset

The DEFINE REVIEW SUBSET command capability is not implemented.

7.13 TOGGLE command, T

T : toggle menu

By default, the menu is displayed with each page. Entering the

TOGGLE MENU command deletes the menu from subsequent pages.

Entering the TOGGLE MENU command again restores the menu display.

7.14 Error Messages

Entering an illegal range for line numbers, rows or columns

results in the output:

ERROR IN RANGE SPECIFICATION - TRY AGAIN:

NOT A VALID CCiMMANF), PLEASE MOf_[FY COMMANf_

and the command is ignored.

Entering a range of line numbers or rows of different types

for modification results in the output:

ERROR - ALL %PARAMETERS OR ATTRIBUTES% IN RANGE ARE NOT
OF THE SAME TYPE
NOT A VALID COMMAND, PLEASE MODIFY COMMAND

73

and the command is ignored.

Entering any other illegal command results in the output:

NOT A VALID COMMAND, PLEASE MODIFY COMMAND

and the command is ignored.

74

CATEGORY]: MODEL

MODEL INFORMATIDN

L ! PRESENT VALUE i NAME l SUBSCRIPT ! DESCRIPTION i UNITS

! ! TEST ()F MAKGE() F ! NAME _ t MOI)EI NAM[

2 _ 20.0000000 ! ROTATION _ I ! MODEL X,Y,Z ROTA ! DEGREES
3 i 30.0000000 i ! 2 l w

4 I 40.0000000 t l 3 _ l

M n : modify value (n = line#,name(subscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu
EDIT:

>

Figure 8. - REVIEWER DISPLAY OF PARAMETER DATA

CATEGORY 3: FACES

CONNECTIVITY nF NODES TO FORM FACES

--.--.----..--...--...----.----.....----.--.------..--.----.--......--.----..--

NAME ! FACE v FACE l FACE l FACE

INDEX I I I 2 l 3 I 4

COL I 1 I 2 i 3 I 4

ROW :
i[I I 2t 3t 4
2! 2 _ 61 7t 3
3! 6 r 5f 8r 7
4! 51 11 41 8
5! 4f 3 r 71 8
6! 5 I 6 I 2! i

M r c : modify value(r= row# or range; c: column#,name(subscript), or range)
C n : change category (n = id or name)
N n : next page (n = + or - pages)
R : reprint page, L n : n rows per page, X r c : expand row# n, column# c
S : set columns to he displayed
E : end and save roods, Q : quit without saving roods, H : help
CAT : list categories, SUB : define review subset, T : toggle menu
EDIT:
>

Figure 9. -REVIEWER Display Of Attribute Data

75

APPENOI X A
USE OF THE SYSTEM LIBRARY PROCESSOR FOR THE COMPLEX EXAMPLE

SRUNI)ICT <CR>
E-N_ NUMBER OF CHARACTER/WORD FOR TARGET SYSTEM:

4 FOR RIM ON PRIME/VAX
i0 FOR RIM ON NOS

2 FOR SDRC/PRL
4 <CR>

SELECT OPTION:
BR - TO BUILD RELATIONS
AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE
BF - TO BUILD FORMATTER ROUTINES
BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
_RV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAMDESCRIPTION
PT - TO PRINT A TEMPLATE
LR - TD LIST RELATIONS
OR - TO PRINT A RELATION
X - TO EXIT
BR<CR>

ENTER RELATION NAME (OR _R> WHEN DONE):
NODES<CR>

ENTER i FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

2<CR>

ENTER RELATION DESCRIPTION (80 CHARACTERS):
NODE POINT COORDINATES<CR>

ENTER YOUR NAME (20 CHARACTERS):
JOHN DOE<CR>

DEFINE THE RELATION NODES :

ENTER ATTRIBUTE NAME (OR <CR> WHEN _ONE)>
X<CR>

A-I

APPENDIXA

ENTER ATTRIBUTE TYPE>

R<CR>

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
1<CR>

DIMENSION = I

ENTER ATTRIBUTE DESCRIPTION>

X COORDINATE<CR>

ENTER UNIT OF MEASUREMENT (<C,R> IF N/A)>
M<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

OK TO ENTER THE ATTRIBUTE X
Y<CR>

INTO THE DATA BASE (Y/N) (<CR>:N):

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
Y<CR>

ENTER ATTRIBUTE TYPE>

R<CR>

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
1<CR>

DIMENSION = I

ENTER ATTRIBUTE DESCRIPTION>

Y COORDINATE<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
M<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

OK TO ENTER THE ATTRIBUTE Y
Y<CR>

INTN THE DATA BASE (Y/N) (<CR>:N):

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
Z<CR>

ENTER ATTRIBUTE TYPE>
R<CR>

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
]<CR>

A-2

APPENDIX A

DIMFNSION = i
ENTER ATTRIBUTE DESCRIPTION>
Z COORDINATE<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
M<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

OK TO ENTER THE ATTRIBUTE Z
Y<CR>

INTO THE DATA BASE (Y/N) (<CR>=N):

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
FACES<CR>

ENTER I FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

2<CR>

ENTER RELATION DESCRIPTION (80 CHARACTERS):
CONNECTIVITY OF NO_ES TO FORM FACES<CR>

DEFINE THE RELATION FACES :

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
FACE<CR>

ENTER ATTRIBUTE TYPE>
I<CR>

ENTER ATTRIBUTE DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
4<CR>

DIMENSION = 4
ENTER ATTRIBUTE DESCRIPTION>

FACE CONNECTIVITY (NODE !__TQ2 TO ,.3, TO 4 (OR TO i IF 4:0) TO I)<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>

<CR>

A-3

APPENOIX A

OK TO ENTER THE ATTRIBUTE FACE
Y<CR>

INTO THE DATA BASE (Y/N) (<CR>:N):

ENTER ATTRIBUTE NAME (OR <CR> WHEN DONE)>
<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
MODEL<CR>

ENTER I FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

I<CR>

ENTER RELATION DESCRIPTION (80 CHARACTERS):
MODEL INFORMATION<CR>

DEFINE THE RELATION MODEL

ENTER PARAMETER NAME (OR <CR> WHEN DONE)>
NAME<CR>

ENTER PARAMETER TYPE>

C<CR>

ENTER NUMBER OF CHARACTERS IN STRING>

80<CR>

ENTER PARAMETER DIMENSION (UP TO 3 SEPARATED BY COMMAS)>
I<CR>

DIMENSION = i
ENTER PARAMETER DESCRIPTION>
MODEL NAME<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>
<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>
<CR>

OK TO ENTER THE PARAMETER NAME

Y<CR>
INTO THE DATA I_ASE (Y/N) (<CR>=N):

ENTER PARAMETER NAME (OR <CR> WHEN DONE)>
ROTATION<CR>

ENTER PARAMETER TYPE>

R<CR>

A-4

APPENDIX A

ENTER PARAMETER DIMENSION (UP TO 3 SEPARATED BY CNMMAS)>
3<CR>

DIMENSION = 3

ENTER PARAMETER DESCRIPTION>

MODEL X,Y,Z ROTATIONS RESPECTIVELY<CR>

ENTER UNIT OF MEASUREMENT (<CR> IF N/A)>

DEGREES<CR>

ENTER OUTPUT FORMAT (<CR> IF N/A)>

<CR>

OK TO ENTER THE PARAMETER ROTATION INTO THE DATA BASE (Y/N) (<CR>=N):

Y<CR>

ENTER PARAMETER NAME (OR <CR> WHEN DONE)>

<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):

<CR>

SELECT OPTION:
BR - TO RUILn RELATIONS

AR - TO ADD TO AN EXISTING RELATION

RT - TN BUILD A TEMPLATE
BF - TO RUIL_ FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA RASE

BRV - TO BUILD A REVIEWER INPUT FILE

RP - TO RUILD PRNGRAM DESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS
PR - TO PRINT A RELATION

X - TO EXIT

BT<CR>

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
MAKGEO IN<CR>

ENTER i IF INPUT TEMPLATE

OR 2 IF OUTPUT TEMPLATE

I<CR>

IDENTIFY ALL INPUT RELATIONS FOR THE TEMPLATE

A-5

APPEND[X A

ENTER RELATION NAME (OR <CR> WHEN DONE):

DIMEN<CR>

ENTER I FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

I<CR>

THE RELATION DIMEN IS ALREADY DEFINED AND HAS

DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):
N<CR>

4 PARAMETERS.

ENTER 0 IF ALL PARAMETERS ARE TO BE RETRIEVED

OR I TO READ PARAMETERS TO BE RETRIEVED FROM A FILE

OR 2 TO ENTER PARAMETERS TO BE RETRIEVED FROM THE TERMINAL

2<CR>

ENTER PARAMETER NAMES EACH FOLLOWED BY <CR>:

(PARAMETER NAME=<CR> WHEN DONE)

LENGTH<CR>

WIDTH<CR>
HEIGHT<_R>

<CR>

YOU HAVE IDENTIFIED 3 PARAMETERS TO BE RETRIEVED

OK TO ENTER THE RELATION DIMEN INTO THE TEMPLATE MAKGEOIN (Y/N) (<CR>=N):

Y<CR>

ENTER RELATION NAME (OR <CR> WHEN DONE):
<CR>

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
MAKGEOOT<CR>

ENTER 1 IF INPUT TEMPLATE

OR 2 IF OUTPUT TEMPLATE

2<CR>

IDENTIFY ALL OUTPUT RELATIONS FOR THE TEMPLATE

ENTER RELATION NAME (OR <CR> WHEN DONE):
NODES<CR>

ENTER i FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

2<CR>

A-6

APPENDIXA

THERELATIONNODES IS ALREADYDEFINEDANDHAS
DOYOUWANTTOSEETHEM(Y/N) (<CR>=N):
N<CR>

3 ATTRIBUTES.

ENTER 0 IF ALl.ATTRIBUTES ARE TO BE REPLACED

OR 1 TO READ ATTRIBUTES TN BE REPLACED FROM A FILE

OR 2 TO ENTER ATTRIBUTES TO BE REPLACED FROM THE TERMINAL

O<CR>

ENTER NUMBER OF CONDITIONS IN THE "WHERE" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

ENTER REPLACEMENT CODE:
I - ADD ALL TUPLES AT ONCE
2 - REPLACE ALL TUPLES AT ONCE
3 - REPLACE ALL TUPLES EXCLUSIVELY AT ONCE
4 - ADD TUPLES ONE AT A TIME
5 - REPLACE TUPLES ONE AT A TIME
6 - REPLACE TUPLES EXCLUSIVELY ONE AT A TIME

3<CR>

OK TO ENTER THE RELATION NODES
Y<CR>

INTO THE TEMPLATE MAKGEOOT (Y/N) (<CR>:N):

ENTER RELATION NAME (OR <CR> WHEN DONE):
FACES<CR>

ENTER I FOR PARAMETER TYPE

OR 2 FOR ATTRIBUTE TYPE

2<CR>

THE RELATION FACES IS ALREADY DEFINED AND HAS

})0 YOH WANT TO SEE THEM (Y/N) (<CR>=N):
N<CR>

I ATTRIBUTES.

ENTER 0 IF ALL ATTRIBUTES ARE TO BE REPLACED
OR i TO READ ATTRIBUTES TO BE REPLACED FROM A FILE
OR 2 TO ENTER ATTRIBUTES TO BE REPLACED FROM THE TERMINAL

O<CR>

ENTER NUMBER OF CONDITIONS IN THE "WHERE" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

A-7

APPENDIX A

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

ENIER REPLACEMENT CODE:
I - ADD ALL TUPLES AT ONCE
2 - REPLACE ALL TUPLES AT ONCE
3 - REPLACE ALL TUPLES EXCLUSIVELY AT ONCE
4 - ADD TUPLES ONE AT A TIME
5 - REPLACE TUPLES ONE AT A TIME
6 - REPLACE TUPLES EXCLUSIVELY ONE AT A TIME
3<CR>

OK TO ENTER THE RELATION FACES
Y<CR>

INTO THE TEMPLATE MAKGEOOT (Y/N) (<CR>=N):

ENTER RELATION NAME (OR <CR> WHEN NONE):
<CR>

ENTER TEMPLATE NAME (OR <CR> WHEN DONE):
DRAWIN<CR>

ENTER i IF INPUT TEMPLATE
OR 2 IF OUTPUT TEMPLATE

I<CR>

IDENTIFY ALL INPUT RELATIONS FOR THE TEMPLATE

ENTER RELATI@_ NAME (OR <CR> WHEN DONE):
MODEL<CR>

ENTER i FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

I<CR>

THE RELATION MODEL IS ALREADY DEFINED AND HAS

DO YOt_WANT TO SEE THEM (Y/N) (<CR>=N):
N<CR>

2 PARAMETERS.

ENTER 0 IF ALl_ PARAMETERS ARE TO BE RETRIEVED
OR I TO REAl) PARAMETERS TO BE RETRIEVED FROM A FILE
OR 2 TO ENTER PARAMETERS TO BE RETRIEVED FROM THE TERMINAL

O<CR>

OK TO ENTER THE RELATION MODEL
Y<CR>

INTO THE TEMPLATE DRAWIN (Y/N) (<CR>=N) :

ENTER RELATION NAME (OR <CR> WHEN DONE):
NODES<CR>

A-8

APPENDIX A

ENTER I FOR PARAMETER TYPE
OR 2 FOR ATTRIBUTE TYPE

2<CR>

THE RELATION NODES IS ALREAnY DEFINED AND HAS

DO YOU WANT TO SEE THEM (Y/N) (<CR>=N):
N<CR>

3 _TTRIBUTES.

ENTER 0 IF ALL ATTRIBUTES ARE TO BE RETRIEVED

OR I TN READ ATTRIBUTES TO BE RETRIEVED FROM A FILE

OR 2 TO ENTER ATTRIBUTES TN BE RETRIEVED FROM THE TERMINAL

O<CR>

ENTER NUMBER OF CONDITIONS IN THE "WHERE" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

OK TO ENTER THE RELATION NODES
Y<CR>

INTO THE TEMPLATE ORAWIN (Y/N) (<CR>=N) :

ENTER RELATION NAME (OR <CR> WHEN DONE):
FACES<CR>

ENTER I FOR PARAMETER TYPE

DR 2 FOR ATTRIBUTE TYPE

2<CR>

THE RELATION FACES IS ALREADY DEFINED AND HAS

110 YOU WANT TP SEE THEM (Y/N) (<CR>=N):
N<CR>

I ATTRIBUTES.

ENTER 0 IF ALL ATTRIBUTES ARE TO BE RETRIEVED

OR 1 TO READ ATTRIBUTES TO BE RETRIEVED FROM A FILE

OR 2 TO ENTER ATTRIBUTES TO BE RETRIEVED FROM THE TERMINAL

O<CR>

ENTER NUMBER OF CONDITIONS IN THE "WHERE" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

ENTER NUMBER OF CONDITIONS IN THE "SORT" CLAUSE
OR 0 FOR NO CONDITIONS

O<CR>

OK TO ENTER THE RELATION FACES
Y<CR>

INTO THE TEMPLATE DRAWIN (Y/N) (<CR>=N):

A-9

APPENDIX A

ENTER RELATION NAME (OR <CR> WHE_ I)ONE):
<CR>

ENTER TEMPLATI NAME (()R<CR> WHEN I)()N_):
<CR>

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION

BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE

BRV - TO BUILD A REVIEWER INPUT FILE

BP - TO BUILD PROGRAM DESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

BS<CR>

ENTER I FOR RIM SCHEMA

OR 2 FOR SDRC/PRL SCHEMA
I<CR>

ENTER SCHEMA DUMP FILE NAME

OR "Q" TO RETURN WITHOUT WRITING A FILE
SCHEMA.DAT<CR>

ENTER RELATION NAME FOR SCHEMA DUMP
OR <CR> FOR COMPLETE DATABASE SCHEMA DUMP
OR "Q" TO QUIT

<CR>

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATI()N

BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE

BRV - TO BUIL_ A REVIEWER INPUT FILE

BP - TO BUILD PROGRAM DESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

BF<CR>

A-IO

APPENDTX A

ENTER TEMPLATE NAME
()R <CR> FOR ALL RELATIONS
fIR "0" Tn Of]IT
MAKGEOIN<CR>

ENTER GETDATA FILE NAME
OR "O" TO RETURN WITHOUT WRITING A FILE
MAKGEOIN.FOR<CR>

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
N<CR>

DO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES? (Y/N) (<CR>=N)
N<CR>

SELECT OPTION:
RR - TO BUILD RELATIONS
AR - TO ADD TO AN EXISTING RELATION
BT - TO RUILD A TEMPLATE
RF - TO BUILD FORMATTER ROtlTINES
BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PRNGRAMDESCRIPTION
PT TO PRINT A TEMPLATE
LR - TO LIST RELATIONS
PR - TO PRINT A RELATINN
X - TO EXIT
_F<CR>

ENTER TEMPLATE NAME
OR <CR> FOR ALL RELATIONS
OR "0" TO QUIT
MAKGEOOT<CR>

ENTER PUTDATA FILE NAME
I)R "Q" TO RETURN WITHOUT WRITING A FILE
MAKGEOOT.FOR<CR>

DO YOU REQUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
N<CR>

DO YOU WANT TO RENAM_I ANY OTHER PARAMETERS/ATTRIBUTES? (Y/N) (<CR>=N)
N<CR>

ENTER MAXIMUM NUMBER OF TI.IPLES TO BE REPLACED FOR RELATION NODES
8<CR>

ENTER MAXIMUM NUMBER OF THPLES TO BE REPLACED FOR RELATION FACES
6<CR>

A-II

APPENDIX A

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION

BT - TO BUIt_D A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILn A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE

BP - TO BUILD PROGRAM DESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

BF<CR>

ENTER TEMPLATE NAME
OR <CR> FOR ALL RELATIONS
OR "Q" TO QUIT
DRAWIN<CR>

ENTER GETDATA FILE NAME

OR "Q" TO RETtJRN WITHOUT WRITING A FILE
DRAWIN.FOR<CR>

DO YOII REOUIRE ANSI STANDARD CODE? (Y/N) (<CR>=N)
N<CR>

nO YOU WANT TO RENAME ANY OTHER PARAMETERS/ATTRIBUTES? (Y/N) {<CR>=N)
N<CR>

ENTER MAXIMUM NUMBEP OF TUPLES T() BE RETRIEVED FOR RELATION NODES
IO0<CR>

ENTER MAXIMUM NUMBER OF TUPLES FO BE RETRIEVED FOR RELATION FACES
IO0<CR>

SELECT OPTION:
BR - TO BUILD RELATIONS
AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE
BF - TO BUILD FORMATTER ROUTINES
BS - TO BUILD A SCHEMA DUMP FOR DATA BASE
BRV - TO BUILD A REVIEWER INPUT FILE
BP - TO BUILD PROGRAM DESCRIPTION
PT - TO PRINT A TEMPLATE
LR - TO LIST RELATIONS
PR - TO PRINT A RELATION
X - TO EXIT
BRV<CR>

A-12

APPENDIXB
SOURCE COOE FILES

THE PROGRAMMAKGEO AS CONTAINED IN THE FILE MAKGEO.FOR:

C

C

PROGRAM MAkGEO

COMMON /INDIMEN/ LENGTH,WIDTH,HEIGHT
REAL LENGTH
COMMON /OUTGEO/ X(8),Y(8),Z(8),NG,FACE(4,6),NF
INTEGER FACE

CALL GETDATA

NG = 8
NF = 6
HL = LENGTH/2.
HW = WIDTH/2.
HH = HEIGHT/2.

X(1) : -HL
Y(I) = -HH
Z (I) : -HW
X(2) : HL
Y(2) : -HH
z(2) = -HW
X(3) = HE
Y(3) : HH
Z(3) = -HW
X (4) = -HL
Y(4) = HH
z(4) = -HW
X(5) = -HL
Y(5) = -HH
z(5) = HW
X(6) = HL
Y(6) = -HH
Z(6) : HW
X(7) = Hk
Y(7) = HH
z(7) = HW
X(8) = -HE
Y(8) = HH
Z(8) = HW
FACE(I,I) = I
FACE (2,1) = 2
FACE(3,1) = 3
FACE(4,1) = 4
FACE(I,2) = 2
FACE(2,2) = 6
FACE(3,2) = 7
FACE (4,2) = 3
FACE(I,3) = 6

FACE(2,31 : 5FACE(3,3 = 8
%. - 5.

B-I

APPEND] X B

C

C

FACE(4,3) : 7

FACE(I,4) : 5

FACE(2,4) : I

FACE(3,4) = 4

FACE(n,4) = 8

FACE(I,5) = 4

FACE(2,5) = 3

FACE(3,5) = 7

FACE(4,5) = 8

FACE(I,6) = 5
FACE(2,6) = 6

FACE(3,6) = 2

FACE(4,6) = I

CALL PUTDATA

END

B-2

APPENDIX B

THE SUBROUTINE GETDATA FOR USE WITHIN MAKGEOIN.FOR

SUBROUTINE GETDATA

COMMON /DBNAME_/ DBASE_.,DBOPN_
REAL*8 DBASE
LOGICAL DBOP_

C
C*** THE PARAMETERS FOR THE RELATION DIMEN

C
C
C
C
C

C

REAL LENGTH
REAL WIDTH
REAL HEIGHT

LOAD REQUIRED COMMONBLOCKS HERE:

INCLUDE 'MAKGEOIN.COMMON/LIST'
DBASE = (SHDATADB)

CALL RIOOI__(LENGTH,WIDTH,HEIGHT)

MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:

INCLUDE 'MAKGEOIN.ASSIGN/LIST'

RETURN

END

ARE:

B-3

APPENDIX B

THE SUBROUTINE PUTDATA

SUBROUTINE PUTDATA

FOR USE WITHIN MAKGEOOT.FOR

C

COMMON /T)BNAME._/DBASE__,DBOPN
REAL*8 DBASE

LOGICAL DBOP"N"

C

C*** THE ATTRIBUTES FOR THE RELATION NODES

REAL X (8)

REAL Y (8)

REAL Z (8)
C*** THE ATTRIBUTES FOR THE RELATION FACES

INTEGER FACE (4, 6)
C

C
C

C

C

C

C

C

LOAD REQUIRED COMMON BLOCKS HERE:

INCLUDE 'MAKGEOOT.COMMON/L IST'

DBASE = (SHDATADB)

MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:

INCLUDE 'MAKGEOOT.ASSIGN/LIST'

CALL WIO01 (X,Y,Z,NO01)

CALL WIOO2__--(FACE,NOO2__T

RETURN

END

ARE:

ARE:

SFOR MAKGEO.FOR
$FOR MAKGEOIN.FOR
SFOR MAKGEOOT.FOR
SLINK MAKGEO.OBJ -

+MAKGEOIN.OBJ -
+MAKGEOOT.OBJ -
+LOADRIM/LIB

CONTENTS OF THE FILE MAKGEO.COM

B-4

APPENDIX B

THE FILE DRAWIN.FOR MODIFIED AS NEEDED:

C SUBROUTINE GETDATA

C

COMMON /DBNAME_./ DBASE_,DBOPN__
REAL*8 DBASE
LOGICAL DBOP_

C

C*** THE PARAMETERS FOR THE RELATION MODEL

CHARACTER* 80 NAME

REAL ROTATION(3)
C*** THE ATTRIBUTES FOR THE RELATION NODES

REAL X (100)

REAL Y (i00)

REAL Z (100)
C*** THE ATTRIBUTES FOR THE RELATION FACES

INTEGER FACE (4, I00)
C

C

C

C

C

LOAD REQUIRED COMMON BLOCKS HERE:

INCLUDE 'DRAWIN.COMMON/LIST'

DBASE = (8HDATADB)

CALL RIO01 (NAME,ROTATION)

CALL RIOO2--(X,Y,Z,NO02)

CALL RIOO3___.(FACE,NO03_')"

MAKE ANY NECESSARY RE-ASSIGNMENTS HERE:

INCLUDE 'DRAWIN.ASSIGN/LIST'

RETURN

END

ARE:

ARE:

ARE:

B-5

APPENDIX B

CONTENFS OF THE FILE DRAWIN.ASSIGN:

C
C
C

CONVERT ROTATION FROM DEGREES TO RADIANS:

DEGRAD = 3.141592654/180.

DO 10 I=1,3

ROTATION(1) = ROTATION(1)
10 CONTINUE

* DEGRAD

WRITE DATA TO INPUT FILE 'DRAW.DAT':

OPEN(8,FILE='DRAW.DAT',STATUS='UNKNOWN')

WRITE(8,

WRITE(8,

WRITE(8,

WRITE(8,

WRITE(8,

WRITE(8,

CLOSE(8)

(A}')NAME
(3E12.4)')(ROTATION(1),I=I,3)
{15)')NO02
(3E12.4)'}TX(1),Y(1),Z(1),I=I,NO02_)
(ZS)')NO03
(415)')((FXCE(J,I),J=I,4),I=I,NO03_)

SFOR DRAWIN.FOR

SLINK DRAWIN.OBJ -

+LOADRIM/LI8

CONTENTS OF THE FILE DRAWIN.COM:

B-6

APPENDIX C
TEMPLATE MAKGEOIN

TO ESTABLISH VALUES FOR LENGTH, WIDTH AND HEIGHT

SREVIEW MAKGEOIN<CR>

CATEGORY I: DIMEN

BOX DIMENSIONS

L l PRESENT VALUE I NAME f SUBSCRIPT ! DESCRIPTION I UNITS

1 ! 0.0000000 ! LENGTH ! _ BOX LENGTH ! M

2 I 0.0000000 ! WIDTH I i BOX WIDTH I M

3 i 0.0000000 ! HEIGHT I i BOX HEIGHT ! M

M n : modify value (n = line#,name(subscript),or line range)

C n : change category (n = id or name)

N n : next page (n = +,or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, O : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:

> M LENGTH I<CR>

> M WIDTH 2<CR>

> M HEIGHT 3<_'R>
> R_CR>

BOX DIMENSIONS

CATEGORY I: DIMEN

t ! PRESENT VALUE { NAME _ SUBSCRIPT ! DESCRIPTION _ UNITS

I ! 1.0000000 { LENGTH i ! BOX LENGTH i M

2 t 2.0000000 ! WIDTH i f BOX WIDTH i M

3 f 3.0000000 ! HEIGHT _ ! BOX HEIGHT _ M

M n : modify value (n = line#,name(suhscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu

EDIT:

> E<CR>

C-I

'APPENDIX D
TEMPLATE DRAWIN

TO ESTABLISH VALUES FOR NAME AND ROTATIONS

$REVIEW DRAWIN<CR>

CATEGORY I: MODEL
MODEL INFORMATION

L ! PRESENT VALUE ! NAME v SUBSCRIPT [DESCRIPTION v UNITS

| i ' NAME t ' MODEL NAME v
2 I 0.0000000 ! ROTATION v I ! MODEL X,Y,Z ROTA ! DEGREES
3 v 0.0000000 I v 2 v ,
4 v N.O000000 v v 3 v ,

M n : modify value (n : line#,name(subscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu
EDIT:

> M 1 'TEST BOX'<CR>

> M 2 20<CR>

> M 3 30<CR>

> M 4 40<CR>

> R<CR>

CATEGORY I: MODEL
MODEL INFORMATION

L ! PRESENT VALUE ! NAME _ SUBSCRIPT ! DESCRIPTION ! UNITS

1 ! 'TEST BOX' 0 NAME i [MODEL NAME v

2 , 20.0000000 ! ROTATION _ I ! MODEL X,Y,Z ROTA ! DEGREES
3 ' 30. O00OnO0 ! ' 2 ' f
4 ' 40.0000000 w ' 3 t I

M n : modify value (n = line#,name(suhscript),or line range)

C n : change category (n = id or name)

N n : next page (n = + or - pages)

R : reprint page, L n : n line#'s per page, X n : expand line# n

E : end and save mods, Q : quit without saving mods, H : help

CAT : list categories, SUB : define review subset, T : toggle menu
EDIT:

> E<CR>

D-1

APPENDI X E

BUILD EASIE

Version 1.0 for VAX/VMS Running EASIE With RIM

(You should have a good knowledge of EASIE before attempti_ig to
use this program)

BUILD EASIE is a utility progra_ designed to aid in the

installation of programs into the Environment for Application

Software Integration and Execution (EASIE). When the

construction of large numbers of relations would make the

interactive processor RUNDICT tedious to use, BUILD EASIE

provides an easy-to-use alternative file interface. The user

creates a data file called EASIE.DAT (described in the following

section) which contains the relation and template data for one or

more programs to be installed into EASIE. BUILD EASIE provides

cnmmands that operate on EASIE.DAT and then prompts for the

desired relations and templates to be created. The BUILD EASIE

program generates a VAX/VMS command procedure called EASIE.COM

which includes the calls to RUNDICT and the answers to all of its

prompts. The long series of prompts in RUNIIICT need not he

answered interactively and the database structure can be easily

maintained in EASIE.DAT. Changing the database structure

requires only simple editing of EASlE.DAT and a re-execution of

BUILD EASIE and EASIE.COM, Currently BUILD EASIE supports only

PARAMETER type relations.

EASIE.COM creates the relations, templates, FORMATTER

routines (GETDATA_/PUTDATA__), the REVIEWER files, the database

schema, and the three RIM database files. The FORMATTER

routines are created in files with the template name and a .FOR

E-I

APPENDIX E

extension. REVIEWER files have the template name with a .REV

extension. The data base schema is created in SCHEMA.DAT.

BUILD EASIE also creates for each input template a comfnand

procedure called a reviewer loader. The reviewer loader calls

the EASIE REVIEWER and loads values into the database for each

variable contained in the template. Editing the reviewer loader

com_nand procedure supplies the values for the variables in the

template. Reviewer loaders are created in files with the input

template name and a .COM extension. These files prnvide a method

of initializing all variables to values representative of some

baseline check case.

The data file can be sorted, by variable name, hy typing the

sort command provided in BUILD EASIE. The sorted data file is

not used by BUILD EASIE but is intended to be a reference tool.

BUILD EASIE is run at the terminal by typing

RUN BUILD EASIE. The first prompt requires the EASIE data file

name. A carriage return will assign the default file name of

EASIE.DAT. The syntax of the three BUILD EASIE co_nmands is then

displayed. The three commands are: (I) "R <relation name>" to

build relations; (2) "T <template name>" to build templates; and,

(3) "S" to sort EASIE.DAT. A simple carriage return will end the

execution of BUILD EASIE. EASIE.COM and any reviewer loaders

will reside in the current directory. EASIE.COM can now be

executed at the terminal or in batch mode.

E-2

APPENDIX E

Creating the EASIE Data Fi|e:

EASIE.DAT is a formatted file that contains the data for an

unlimited number of relations and templates• Template names must

begin with the letter 0 for output templates or the letter I for

input templates. The format of EASIE.DAT is as follows:

* Relation name
Date User name

Variable name Datatype dimensions
template names...

Variable name--Datatype dimensions
template names...

* Relation name Relation description
Date User name

Va ri abl e__name Datatype dimensions
template names...

Relation description

Units Format

Units Format

Units Format

Descri pti on

Descri pti on

Description

All data must appear in the proper columns for BUILD EASIE to

work properly. All variables listed below a relation name are

placed in that relation until a new relation name is declared or

the end of the file is rPached. The template names refer to the

variable listed on the line above them, All templates in which

the variable will be included must be listed. No field in the

data file may begin with the $ character. The column and field

specifications for each piece of information is as follows:

E-3

EASIE Data Item

APPENDIX E

Comments Beginning Column #

Relation name

Relation Description

Date

User Name

Variable Name

Data Type

Dimensions

Units

Format

Variable Description

Template Names

* in column #2 must be present 4

40 characters maximum 13

Date relation is created (not used by EASIE) 4

Name of programmer 13

7 characters maximum 2

Must be R, C, D, or I 10

Up to 3 separated by commas with no 12

embedded spaces. For character type the

length must appear first, followed by a

space then the dimensions

Anything, use "+" for no units 25

FORTRAN output format, or "+" for default 42

40 characters maximum 59

Any number separated by blanks, begin
with I or 0 4

Example Run of BUILD EASIE:

The following is a sample scenerio for installing a program

into EASIE using BUILD EASIE. Terminal input and output is shown

in small type with the user inputs in bold face.

We begin by displaying our default directory which contains

the BUILD EASIE executable and the EASIE.DAT file.

$ DIR

Directory DISK:[EASIE]

BUILD EASIE.EXE;I EASIE.DAT;1

Total of 2 files.

E-4

APPENDIX E

$ TYPE EASIE.DAT

* REL 1 RELATION FOR TEST PROGRAM

01/_i/88 JOHN SMITH
XXX R I FEET +

ITEMP OTEMP
YYY I 2,3,2 INCHES 15

ITEMP OTEMP
ZZZ R 5,6 METERS +

OTEMP ITABLE
* REL 2 RELATION NO. 2

03/-0"3/88 JOE BLOW
DESCR C 80 1 + +

OTEMP ITABLE
VOL R I M**3 +

OTEMP
COUNT I I + 13

[TEMP

DISTANCE TO SATELLITE

SIZE OF PARTS

COORDINATES

PROGRAM DESCRIPTION.

VOLUME OF OBJECT

NUMBER OF PARTS

This EASIE.DAT file contains the data for two relations and

three templates. Relation REL 1

YYY, and ZZZ.

contains the variables XXX,

Relation REL 2 contains the variables DESCR, VOL,

and COUNT. Input template ITEMP contains the variables XXX, YYY,

DESCR, and COUNT. Output template OTEMP contains the variables

XXX, YYY, ZZZ, DESCR, and VOL. Input template ITABLE contains

the variables ZZZ and DESCR.

Now we run RUILD EASIE to create the command procedures and

the sorted data file. EASIE requires that a relation be created

before a template can use it, so you must be sure to build the

relations before building the templates.

E-5

APPENDIX E

$ RUN BUILD EASIE

Build Easie

VER. 1.0 VAX/VMS - RIM, 5-5-87

ENTER EASIE DATA FILE NAME, <CR> = EASIE.DAT
-> EASIE.DAT

ENTER: R <RELATION NAME>
T <TEMPLATE NAME>
S
<CR>

TO BUILD RELATIONS
TO BUILD TEMPLATES
TO SORT THE DATA FILE
TO END

-> R REL 1
RELATION REL i COMPLETED
-> R REL 2
RELATION REL 2 COMPLETED
- > T I TEMP
TEMPLATE ITEMP COMPLETED
-> T OTEMP
TEMPLATE OTEMP COMPLETED
-> S
THE SORTED DATA IS IN FILE: SORT.DAT
->
FORTRAN STOP

$ DIR

Directory DISK:[EASIE]

BUILD EASIE.EXE;I
I TEM P_OM ; I
SORT.DAT;I

EASIE.COM;I

Total of 5 files.

EASIE.DAT;I

We see that the command procedure EASIE.COM, the reviewer

Inader command procedure ITEMP.COM, and the sorted data file

SORT.DAT have been created in our current directory. Notice

that the template ITABLE is not listed in the directory because

it was not specified to be huilt. EASIE.DAT may contain many

relations and templates that are not referenced on any given run

of BUILn EASIE.

E-6

APPENDIX E

Since this is a new EASIE system, we must create the initial

dictionary. We run BUILDDICT.COM to create the files DICTI.DAT,

DICT2.DAT, and DICT3.DAT. The symbol RIM must also exist to

execute RIM.

$ RIM :: "RUN DISKl:[RIH.R[HS1RIH.EXE"
$ taTOAIDE: [BUILD_DICT]BUILDDICT.COM

BEGIN RIM VAX VERSION 5.0 UD23 87/05/14 13.18.50

RIM COMMANDMODE
ENTER "MENU" FOR MENU MODE

R>

BEGIN RIM SCHEMA CNMPILATION

RIM SCHEMA COMPILATION FOR D[CT IS COMPLETE

EXISTING RELATIONS AS OF 87/05/14 13.19.15

ATTR I B
PARAM
RELATION
TEMPLATE
TP.CNTRL
TP. INDEX
TP.SORT
TP.WHERE
TPC. INDX
PROGRAM
FORNAM

FORTRAN STOP

$ DIR

Directory DISK:[EASIE]

BUILD EASIE.EXE;I DICTI.DAT;I
EASI E.--COM;i EASI E. DAT; i

DICT2.DAT;1
ITEMP.COM; I

Total of 8 files.

DICT3.DAT;I
SORT. DAT; 1

E-7

APPENDIX E

Next, the command file EASIE.COM is executed with the output

written to RUNEASIE.OUT. The output can be very lengthy and is

most often deleted. But the output file can be useful if

problems develop when running EASIE.COM. With each subsequent

execution of EASIE.COM, the dictionary files (DICTI.DAT,

DICT2.DAT, and DICT3.DAT) should be deleted and BUILDDICT.COM

should be re-executed.

Common problems that may develop when running EASIE.COM

include: (a) no dictionary files in the current directory;

(b) relation or template files not in the current directory;

(c) relation or template already exists in the dictionary before

EASIE.COM is run attempting to create that same relation or

template; or (d) a template references a relation that has not

been created.

$ @EASIE/OUTPUT=RUNEASIE. OUT

S Om

ni rectory DISK:EEASIE]

BUILD EASIE.EXE;I DATADBI. DAT;I
DICTI.DAT;I DICT2.DAT;I
EASIE.DAT;I ITEMP.COM;I
OTEMP.FOR;I OTEMP.REV;I
SORT.DAT;I

Total of 17 files.

DATADB2.DAT;1
DICT3.DAT;1
ITEMP.FOR;I
RUNEASIE.OUT;I

DATADB3.DAT;I

EASIE.COM;I
ITEMP.REV;1

SCHEMA.DAT;I

A GETDATA routine is in ITEMP.FOR, and a PUTDATA routine is

in OTEMP.FOR. The schema file is in SCHEMA.DAT. The directory

listing shows the REVIEWER files and the three RIM database files

E-8

are present. The files EASIE.COM, RUNEASIE.OUT, and

SCHEMA.DATare often deleted at this point.

We now look at the REVIEWER loader ITEMP.COM. A

familiarity with the REVIEWER commands (section 7) is needed to

understand the contents of this file. The user must edit this

file and change the zeroes to any value consistent with the

variable's type. Variables of type CHARACTERmust have values

enclosed in double quotes. All lines in the file not beginning

with M must be left in place. Any lines beginning with M can be

deleted if desired. After the proper values have been placed in

the file, this command procedure may be executed to load the

database.

$ TYPE ITEMP.COM
$ DEFINE SYS$OUTPUTTRASH.DAT
$ REVIEW ITEMP
C REL I
M XX X--O

M YYY(I,I,I) 0

M YYY(I,I,2) 0

M YYY(1,2,1) 0

M YYY(I,2,2) 0

M YYY(I,3,1) 0
M YYY(I,3,2) 0

M YYY(2,1,1) 0

M YYY(2,1,2) 0

M YYY(2,2,1) 0

M YYY(2,2,2) 0

M YYY(2,3,1) 0

M YYY(2,3,2) 0
C REL 2

M COUNT 0

E

$ F)EASSIGN SYS$OUTPUT

$ DELETE TRASH.DAT;*

The SORT.DAT file is shown on the following page. This file

may be created to help track down variables in the data base and

can be very useful during program development and integration.

E-9

APPENDIX E

$ TYPE SORT.DAT

VARIABLE TYPE DIMENSION UNITS FORMAT DESCRIPTION

RELATION NAME - TEMPLATE NAMES ...

COUNT I i + 13
REL 2 - ITEMP

DESCR C 8-0"I + +

REL 2 - OTEMP ITABLE
VOL R 1-- M**3 +

REL 2 - OTEMP
XXX R I FEET +

REL i - ITEMP OTEMP

YYY I 2_3,2 INCHES 15

REL I - ITEMP OTEMP

ZZZ R 5"j',6 METERS +

REL I - OTEMP ITABLE

NUMBER OF PARTS

PROGRAM DESCRIPTION.

VOLUME OF OBJECT

DISTANCE TO SATELLITE

SIZE OF PARTS

COORDINATES

E -I0

APPENDIX F

INSTRUCTIONS - EASIE CODING FORM

When one computer program provides data used by another program, it may
be more effective to integrate these programs around a common information
database and automate the data exchange rather than to manually perform the
data exchange each time. These brief instructions explain which information
about a computer program variable will be needed to integrate that program
into an EASIE central database system using the utilties available for this
purpose. Since the application programmer, who is the expert on the

definition of variables needed in the database, may not perform the actual

integration, he may instead provide the needed information on this form so

that another program implementer can do the job for him.

In reference to the EASIE coding form, columns 2 through 6, 9, and I0
must be filled in by the application programmer who can define for the
candidate program all input and output variables (names, descriptions, and

units) that will be shared with the central database. Obviously, all input

variables should be included, but not all variables typically written to a

formatted output file will be deemed important for the database. The program

expert can optionally fill in columns 1, 7, and 8 if such information is

helpful. (See explanation for these columns below.)

Once all program inputs and any needed outputs are described on this

coding form, the program implementer, who must be familiar with data already
in the database, will fill in columns 11, 12, and 13. The implementer will

determine whether the variables described already exist in the database and

where (in which database relation) new variables should be placed. All of the

information in columns 2 through 10 will then be used hy the implementer for

building relations, database I/O subroutines, etc.

A brief description of each column follows:

. Column I (optional) provides a space for cross-referencing symbols used

in program documentation with the program FORTRAN variables (column 2)
used in the code. This is purely for the convenience of the application
programmer and is intended to aid his bookkeeping.

. Column 2 (required) is for listing all, variables that are input to the

program and all output variables selected for inclusion in the
database. [Column 9 indicates how (I-input, O-output, and B-both) the

variables are used.] Do not use local or subroutine variable names, hut

use only the variable name of the main program or the program module into
which the data will be read/written from/to the database.

. Column 3 (required) specifies whether the variable is real (R), integer
(1), double precision (D), or character (CXXX). When it is type
character, then the length of the character variable should be stated.

4. If the variable is subscripted, column 4 should declare the dimensions of
the array (up to three-dimensional arrays are allowed).

. Column 5 (required) is the description of the variable, up to 80
characters, but should be given concisely in the first 16 characters of
the field which the REVIEWER automatically displays for Parameter type

F-1

APPENDIX F

only. If groups of input variables are somehow associated with various input

options, then some indication of this grouping should also be included in the

first 16 characters. Characters 17-80 will not be automatically displayed,

but can be examined by the Expand line # (X menu selection) option provided by
the REVIEWER.

e Column 6 (required) gives the units of the variables which can be

expressed in any understandable fashion up to 16 characters. The

REVIEWER automatically displays 10 characters for Parameter Type only.

However, a simple set of one- or two-character abbreviations will

facilitate the possible later development of a units conversion

utility. Examples of some abbreviations are:

FT feet N-M newton meters

FT2 feet squared NM nautical miles
LB pounds LB/DY pounds per day

DR degrees Rankine

7. Column 7 (optional) can be used if the program expert wishes to see a

variable displayed in a particular way when using the REVIEWER.

. Column 8 (optional) will allow the specification of a reference value for
the variable. Such reference values could define a standard check case

or typical run which would thus provide a coherent set of initial values

for the database. Typically, at least the input values should be

provided with reference values. If no values are given, data will be
initialized in the database to zero or blank for character data.

9. Column 9 (required) indicates whether a variable is an input (I) to the

program or an output (0) from the program, or it might be both (B).

10. Column 10 (if applicable) indicates if a variable is in a common block by

giving the common block name.

Columns II,]2, and 13 are not filled in by the application programmer,
hut are used by the program implementer.

11. Column 11 is the attribute or parameter name. If the variable already

exists in the database by another name, the name as it already appears in

the database must be used and will be given in this column.

12. Column 12 contains the relation name. If the variable is new to the

database, it may be placed in an existing relation or a new relation.

13. Column 13 contains the assignment of the relation type (A-ATTRIBUTE or P-

PARAMETER).

Note: Please fi|l in the program name and contact person's name and

phone number in the spaces provided at the top of the form.

F-2

q

W In

3-c g_-

hi

W

7

I
I

!i
11 I

°i8

I,,IJ I

_"] kM

JJ

Z_

_D

?..->- _.w I

APPENDIX

F-3

F

ENI_T, PAC,_ T3

I[_ I!OOP, _UALrf'Y

:i.IJ

t,L

APPEND[X G
VAX SYMBOL DEFINITIONS

The following VAX logical

d oc umen t :

(i)

(2)

(3)

(4)

(5)

and symbol definitions are used throughout this

TOAIDE -A logical defining the directory location of the EASIE software.

RUNDICT - A symbol used to execute the SYSTEM LIBRARY PROCESSOR.

RUNRIM - A symbol used to execute interactive RIM.

LOADRIM - A logical defining tile directory location of the RIM FORTRAN

I ibrary.

REVIEW - A symbol used to execute the REVIEWER.

These logicals and symbols are defined at the operating system level

during installation of EASIE [5].

G-I

REFERENCES

•

•

•

•

•

•

Date, C. J.: The Systems Programming Series Volume I - AN
INTRODUCTION TO DATABASE SYSTEMS, Third Edition,
Addison-Wesley Publishing Company, February 1982.

Boeing Computer Services Company, BCS RIM - Relational
Information Management System Version 6.0 User Guide, May
1983.

Randall, D. P.; Jones, K. H.; and Rowell, L. F.: The Environ-

ment For Application Software Integration and Execution

(EASIE) Version 1.0. VOLUME IV - SYSTEM MAINTENANCE
GUIDE• NASA TM-I00576, April 1988.

Schwing, Dr. J. L.; Rowell, L. F.; and Criste, R. E.: The
Environment For Application Software Integration and Execu-
tion (EASlE) Version 1.0. VOLUME III - PROGRAM EXECUTION
GlllnE. NASA TM-I00575, April 1988.

Rowel|, L. F.; and Davis, J. S.: The Environment For Applica-
tion Software Integration and Execution (EASIE) Version l.O
VOLUME I - EXECUTIVE OVERVIEW• NASA TM-I00573, May 1988.

Dube, R. P.: and Smith, M. R.: "Managing Geometric
Information With A Database Manage_lent Systen" IEEE

Computer Graphics and Applications, V. 3, No. _, pp. 57-62,

October 19R3.

Jacky, J. P.; and KaPet, I. J.: "A General Purpose Data Entry
Program", CACM, V. 26, No. 6, pp. 409-417, June Iq83.

Structural Dynamics Research Corporation, I-DEAS TM USER'S
GUIDE, Level 3, 5201.004, March 19_6.

AWLSA Report Documentation Page

1. Report No.

NASA TM- 100574

2. Government Accession No,

4. Title and Subtitle

The Environment For Application Software Integration and
Execution (EASIE) Version 1.0, Volume II - Program
Integration Guide

7, Author(s)

Kennie H. Jones, Donald P. Randall, Scott S. Stallcup,

and Lawrence F. Rowel l

3. Recipient's Catalog No.

5. Report Oate

December 1988

6. Performing Organization Code

8. Performing Organization Report No.

9. Pe_orming Organization Name and Addre_

NASA Langley Research Center,
Hampton, VA 23665-5225

12. S_n_ring Agency Name and Addre_

National Aeronautics and Space Administration
Washington, DC 20546- 0001

10. Work Unit No.

506-49-31-01

11. Contract or Grant No.

13. Ty_ of Repo_ and Peri_ Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

Kennie H. Jones, Donald P. Randall, and Scott S. Stallcup: Computer Sciences

Corporation, Hampton, Virginia.
Lawrence F. Rowell" Langley Research Center, Hampton, Virginia.

16. Abstract

The Environment For Application Software Integration and Execution, EASIE,
provides a methodology and a set of software utility programs to ease the task of

coordinating engineering design and analysis code_. EASIE was designed to meet

the needs of conceptual design engineers that face the task of integrating many
stand-alone engineering analysis programs. Using EASIE, programs are integrated
through a relational database management system.

Volume It, describes the use of a SYSTEM LIBRARY PROCESSOR to construct a

DATA DICTIONARY describing all relations defined In the database, and a 3EMPLATE

LIBRARY. A TEMPLATE is a description of all subsets of relations (including
conditional selection criteria and sorting specifications) to be accessed as

input or output for a given application. Together, these form the SYSTEM LIBRARY

which is used to automatically produce the database schema, FORTRAN subroutines

to retrieve/store data from/to the database, and instructions to a generic

REVIEWER program providing review/modification of data for a given template.
Automation of these functions eliminates much of the tedious, error-prone work

required by the conventional approach to database integration.

17. Key Words (Sug_sted by Author(s)l

Program Interfacing

Program Integration

Database Management

Data Dictionary

REVIEWER
FORMATTER
EASIE

19. SecuriW Classif. (of _his repot)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

Subject category - 61

20. Security Classit. (of this page)

Unclassified 21, No. of pages 1 _" Price120 A06

NASA FORM 1626 OCT 86

:. z

' r' i

r

_ k

APPENDIX A

ENTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES

OR <CR> TO CREATE A LOCAL REVIEWER FILE

<CR>

ENTER TEMPLATE NAME

OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES

OR "Q" TO QUIT
MAKGEOIN<CR>

SELECT OPTION:

BR - TO BUILD RELATIONS

AR - TO ADD TO AN EXISTING RELATION

BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES
BS - TO BUILD A SCHEMA DUMP FOR DATA BASE

BRV - TO BUILD A REVIEWER INPUT FILE

BP - TO BUILD PROGRAM DESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

BRV<CR>

ENTER DIRECTORY LOCATION FOR REVIEWER INPUT FILES

OR <CR> TO CREATE A LOCAL REVIEWER FILE

<CR>

ENTER TEMPLATE NAME
OR <CR> TO CREATE REVIEWER FILES FOR ALL TEMPLATES

OR "Q" TO QUIT
DRAWIN<CR>

ROW MODIFICATION FLAG FOR RELATION NODES
0 - FULL MODIFICATION
I - MODIFY BUT CANNOT ADD ROWS
2 - CANNOT MODIFY ROWS
2<CR>

ROW MODIFICATION FLAG FOR RELATION FACES

0 - FULL MODIFICATION

i - MODIFY BUT CANNOT ADD ROWS

2 - CANNOT MODIFY ROWS

2<CR>

A-13

APPENDIX A

SELECT OPTION:

BR - TO BUILD. RELATIONS

AR - TO ADD TO AN EXISTING RELATION
BT - TO BUILD A TEMPLATE

BF - TO BUILD FORMATTER ROUTINES

BS - TO BUILD A SCHEMA DUMP FOR DATA BASE

BRV - TO BUILD A REVIEWER INPUT FILE

BP - TO BUILD PROGRAM DESCRIPTION

PT - TO PRINT A TEMPLATE

LR - TO LIST RELATIONS

PR - TO PRINT A RELATION

X - TO EXIT

X<CR>

A-14

